A resource for the Degree-Diameter Problem
Δ-D Table
The table gives the state of the art with respect to the largest known (Δ,D)-graphs.
If you don't see the background colours of the table cells, you may use this direct link (http://www-ma4.upc.es/~comellas/delta-d/taula_delta_d.html) to the table (in each cell, the background colour indicates the author).
Entries in boldface are optimal.
Δ \ D | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
3 | 10 | 20 | 38 | 70 | 132 | 196 | 336 | 600 | 1 250 |
4 | 15 | 41 | 98 | 364 | 740 | 1 320 | 3 243 | 7 575 | 17 703 |
5 | 24 | 72 | 212 | 624 | 2 772 | 5 516 | 17 030 | 53 352 | 164 720 |
6 | 32 | 111 | 390 | 1 404 | 7 917 | 19 282 | 75 157 | 331 387 | 1 212 117 |
7 | 50 | 168 | 672 | 2 756 | 11 988 | 52 768 | 233 700 | 1 124 990 | 5 311 572 |
8 | 57 | 253 | 1 100 | 5 060 | 39 672 | 130 017 | 714 010 | 4 039 704 | 17 823 532 |
9 | 74 | 585 | 1 550 | 8 268 | 75 893 | 270 192 | 1 485 498 | 10 423 212 | 31 466 244 |
10 | 91 | 650 | 2 223 | 13 140 | 134 690 | 561 957 | 4 019 736 | 17 304 400 | 104 058 822 |
11 | 104 | 715 | 3 200 | 18 700 | 156 864 | 971 028 | 5 941 864 | 62 932 488 | 250 108 668 |
12 | 133 | 786 | 4 680 | 29 470 | 359 772 | 1 900 464 | 10 423 212 | 104 058 822 | 600 105 100 |
13 | 162 | 851 | 6 560 | 39 576 | 531 440 | 2 901 404 | 17 823 532 | 180 002 472 | 1 050 104 118 |
14 | 183 | 916 | 8 200 | 56 790 | 816 294 | 6 200 460 | 41 894 424 | 450 103 771 | 2 050 103 984 |
15 | 187 | 1 215 | 11 712 | 74 298 | 1 417 248 | 8 079 298 | 90 001 236 | 900 207 542 | 4 149 702 144 |
16 | 198 | 1 600 | 14 640 | 132 496 | 1 771 560 | 14 882 658 | 104 518 518 | 1 400 103 920 | 7 394 669 856 |
A World Combinatorics Exchange resource at
http://www-ma4.upc.es/~comellas/delta-d/taula_delta_d.html
A graph, G=(V,E), consists of a non empty finite set V of elements called vertices and a set E of pairs of elements of V called edges. The number of vertices N=|G|=|V| is the order of the graph. If (x,y) is an edge of E, we say that x and y (or y and x) are adjacent and this is usually written x --> y. It is also said that x and y are the endvertices of the edge (x,y). The degree of a vertex ∂(x) is the number of vertices adjacent to x. The degree of G is Δ = maxx in V ∂(x). A graph is regular of degree Δ or Δ-regular if the degree of all vertices equals Δ. The distance between two vertices x and y, d(x,y), is the number of edges of a shortest path between x and y, and its maximum value over all pair of vertices, D=maxx, y in V d(x,y), is the diameter of the graph. A (Δ , D)-graph is a graph with maximum degree Δ and diameter at most D. The order of a graph with degree Δ (Δ> 2) of diameter D is bounded by the Moore bound.
Recent updates:
Please, send new results to: cd@lri.fr (Charles Delorme, LRI, who keeps the LaTeX table) comellas@ma4.upc.edu (Francesc Comellas, DMAT, who updates this WWW table).
It is known that, for D ≥ 2 and Δ ≥ 3, this bound is only attained if D=2 and Δ=3,7 , and (perhaps) 57, (see [1]). In this context, it is of great interest to find graphs which for a given diameter and maximum degree have a number of vertices as close as possible to the Moore bound.
For some values in the table you may download the adjacency list and/or the Cabri file. (Download the Cabri program to study graphs from here).
Recent updates:
- Eduardo Canale: August 22, 2012 (15,2).
- Alexis Rodriguez/Eduardo Canale: June 30, 2012 (9,5), August 20, 2012 (6,9).
- G. Exoo, yellow: May 21, 2010 (5,4); May 19, 2010 (4,4), (6,3); January 28, 2008 (3,7), (3,8), (3,9); July 27, 2006 (4,7); May 13, 2006 (11,2); November 12-24 2005 (3,7); November 1, 2005 (7,3); September 12, 2005 (3,9); May 24, 2005 (3,10); July 17, 1998 (3,6); July 1, 1998 (3,8); May 22, 1998 (16,2), (4,4), (5,3), (6,3) [Ex01]; May 19, 1998 (7,3) [Ex01].
- Jean-Jacques Quisquater, violet: October 19, 2007; (3,9) [Qu07].
- J. Gómez, lime: September 10, 2006; (12,3),(13,3),(14,3) [Go06].
- Marston Conder, salmon: August 17, 2006 (3,10) [Co06].
- E. Loz, orange: November and August 2006: Most values for degrees 4-10 and diameter 5 and 7-10. See [Lo06] for more details while the descriptions are not updated; July 3-11, 2006 (4,8),(4,9),(4,10), (5,5),(5,7),(5,8),(6,4),(6,5),(6,7),(6,8),(7,6),(8,4),(8,5),(9,4),(9,5),(10,4),(10,5),(11,5) [Lo06].
- G. Pineda-Villavicencio, J. Gómez, M. Miller, H. Pérez-Rosés, green: July 27, 2006 (5,6), (6,6), (9,6), (12,6), (14,6) [PiGoMiPe06].
- J. Gómez, M. Miller; light green: April 2005; (13,10),(15,7),(15,10) [GoMi06].
- J. Gómez, olive; June 2003; (8,6), (10,6) [Go05].
- P. Hafner; blue: Jan 2003 (7,10), (14,8); Jul 1997 - Jul 1998 (5,9), (5,10), (6,7), (6,8),(6,9),(6,10), (7,6),(7,8),(7,9),(8,5), (8,7), (8,8),(8,9),(8,10), (9,7),(9,8),(9,9),(9,10), (10,5), (10,7), (10,8),(10,9),(10,10), (11,5), (11,7),(11,8), (12,7), (13,5), (13,7), (14,5), (15,8), see [Ha95]; Jul 14 1997; (12,7), (13,7) [5]. Apr 24, 1997; (13,8) [5].
- C. Delorme, J. Gómez; mediumgreen 2002 (11,9) (12,9) (13,9) (14,9) [DeGo02].
- B.D. McKay, M. Miller, J. Siran; pink: Mar 12, 1997 (13,2) [McMiSi98].
- M. Sampels; light blue 1997 (5,4) (7,4) [Sa97,Sa98].
A LaTeX dvi table and dvi legend are available from Charles Delorme, Laboratoire de Recherche en Informatique, Orsay, France.
Please, send new results to: cd@lri.fr (Charles Delorme, LRI, who keeps the LaTeX table) comellas@ma4.upc.edu (Francesc Comellas, DMAT, who updates this WWW table).
Link to a Java applet that computes the degree and diameter of a graph in a file, local or accessible by HTTP, and formatted as a list of adjacencies. Click here.
General references and recent results | |
|
Related problems are:
|
Share: