Seminar 2014-2015
(If you are using the Firefox web browser, you may need to reload the page to obtain its most recent version instead of the cache version.)
Sessions and activities
Thursday July 16, 2015, 12h
C3-Room 005, Campus Nord UPC
Edita Máčajová, Comenius University, Bratislava, Slovakia
We discuss old and new results and research directions on the way towards these long-standing conjectures. Our talk will include results concerning extensions, bipartizing matchings, Fano colourings, and others.
22nd International Colloquium on Structural Information and Communication Complexity
SIROCCO 2015
July 15-17, 2015
Montserrat, Spain
On Wednesday July 15, 14:30 - 15:20 Memorial Talk
Miquel Àngel Fiol
On the works of José Gómez. In memoriam.
Joan Vilaltella
ADVANCED COURSE ON COMBINATORIAL MATRIX THEORY
June 29 to July 3, 2015, CRM
http://www.crm.cat/en/Activities/Curs_2014-2015/Pages/Combinatorial-Matrix-Theory.aspx
Speakers:
Richard A. Brualdi, University of Wisconsin-Madison
Angeles Carmona Mejías, Universitat Politècnica de Catalunya-BarcelonaTech
Stephen J. Kirkland, University of Manitoba
Dragan Stevanovic, Serbian Academy of Sciences and Arts (SANU)
Pauline van den Driessche, University of Victoria
Workshop on Algebraic Combinatorics
18 June 2015 at Tilburg University, The Netherlands.
Invited speakers:
Aart Blokhuis http://www.win.tue.nl/~aartb/ - Technische Universiteit Eindhoven
Sebastian Cioaba http://www.math.udel.edu/~cioaba/ - University of Delaware
Miquel Àngel Fiol http://www-ma4.upc.edu/~fiol/ - Universitat Politècnica de Catalunya
Monique Laurent http://homepages.cwi.nl/~monique/ - Centrum Wiskunde & Informatica Amsterdam/Tilburg University
Oriol Serra http://www-ma4.upc.edu/~oserra/ - Universitat Politècnica de Catalunya
http://workshoponalgebraiccombinatorics2015.weebly.com/
Wednesday June 17, 15h30
Facultat de Filosofia (UB), 4th floor
Montalegre 6, Barcelona
SET THEORY SEMINAR
Jordi López Abad, ICMAT-CSIC
Ramsey properties of finite dimensional normed spaces
WORKSHOP ON STRATEGIC BEHAVIOR AND PHASE TRANSITIONS IN RANDOM AND COMPLEX COMBINATORIAL STRUCTURES
June 8 to 12, 2015, CRM Barcelona
http://www.crm.cat/en/Activities/Curs_2014-2015/Pages/Strategic-Behaviour.aspx
COMPUTATIONAL GEOMETRY SEMINAR
Thursday, June 11, 2015, 15:00-16:00
Room S215 Omega Building, Campus Nord UPC
(equiv.: Room 215 Floor -2)
Déborah Oliveros, Universidad Nacional Autónoma de México
Helly-type theorems and beyond
Abstract:
COMPUTATIONAL GEOMETRY SEMINAR
Tuesday, June 9, 2015, 15:00-16:00
Room S215 Omega Building, Campus Nord UPC
(equiv.: Room 215 Floor -2)
Birgit Vogtenhuber, Technische Universität Graz, Austria
Enumerating All Good Drawings of Small Complete Graphs
Abstract:
Wednesday, June 3, 2015
Seminar at CRM (Centre de Recerca Matemàtica)
Christos Papadimitriou, University of California, Berkeley
Complexity in Game Theory
I shall recount and reexamine a decade of progress and debate on these questions.
Seminar at CRM
Paul Goldberg, Oxford University
Learning game-theoretic equilibria via query protocols
Thursday May 21, 12h
C3-Room 005, Campus Nord, UPC
Dieter Mitsche, Univ. Nice
On the bondage number of random graphs
Joint work with X. Pérez-Giménez and P. Pralat.
Thursday May 7, 12h
C3-Room 005, Campus Nord, UPC
Ignasi Sau, CNRS-LIRMM Montpellier
The List Allocation problem and some of its applications in parameterized algorithms
(1) An FPT algorithm for a generalization of Digraph Homomorphism, which we call Arc-Bounded List Digraph Homomorphism.
(2) An FPT algorithm for a graph partitioning problem, called Min-Max Graph Partitioning.
(3) An FPT 2-approximation algorithm for computing the "tree-cut width" of a graph, a graph invariant recently introduced by Wollan [2013] and that has proved of fundamental importance in the structure of graphs not admitting a fixed graph as an immersion.
If time permits, we will partially discuss the above applications of our main algorithm. No previous knowledge of Paramerized Complexity will be assumed in the talk.
This is joint work with EunJung Kim, Sang-Il Oum, Christophe Paul, and Dimitrios M. Thilikos.
Thursday April 30, 12h
C3-Room 005, Campus Nord, UPC
Joaquim Bruna, UAB-CRM Barcelona
Thursday April 23, 12h
C3-Room 005, Campus Nord, UPC
Juraj Hromkovic, ETH Zurich
Towards a better understanding of the hardness of NP-hard optimization problems
We present the concept of the stability of approximation. The basic idea is to partition the set of the instances of a given hard optimization problem into infinitely many infinite classes with respect to the quality of efficiently achievable approximation. This approach enables to recognize classes of easy instances as well as to fix which kind of instances is really hard and whether the hard instances are more or few exotic or typical. In this way one revise the classification of the hardness of discrete optimization problems.
Thursday March 19, 12h
C3-Room 005, Campus Nord, UPC
Juanjo Rué, Freie Universitat Berlin
Arithmetic Removal Lemmas and Independent sets in hypergraphs
In this talk I will present how to use this technology together with arithmetic removal lemmas due to Serra, Vena and Kral in the context of arithmetic combinatorics. We will show how to get sparse (and random) analogues of well-known additive combinatorial results even in the non-abelian situation.
This talk is based on a work in progress joint with Oriol Serra and Lluís Vena.
Thursday March 5, 12h
C3-Room 005, Campus Nord, UPC
Elisabet Burjons, UPC Barcelona
On-line graph coloring with random adversary
This is joint work with Juraj Hromkovič, Xavier Muñoz and Walter Unger.
Wednesday February 25, 12h
Sala d'Actes de l'FME
Lectura de la tesi doctoral d'Aaron Dall
Matroids: h-vectors, zonotopes, and Lawrence polytopes
El principal objeto de estudio de la presente tesis son las matroides, que generalizan propiedades de matrices a un contexto más combinatorio. Nos interesaremos principalmente por tres clases particulares: matroides regulares, matroides aritméticas, y matroides internamente perfectas. De estas famílias, las matroides regulares son las mejor estudiadas. En cambio, las matroides aritméticas son estructuras relativamente nuevas que capturan simultáneamente invariantes combinatorias y geométricas de configuraciones racionales de vectores. Introducimos en esta tesis la clase de matroides internamente perfectas, que nos permiten usar la estructura del orden interno de dichas matroides para probar, en este caso y suponiendo la veracidad de una afirmación, la conjetura de Stanley que cualquier h-vector de una matroide es una O-secuencia pura. Esta tesis está estructurada de la siguiente forma. En el Capítulo 1 damos los antecedentes relevantes. En el Capítulo 2 ofrecemos una nueva demostración de una generalización del teorema de Kirchhoff. Después reestructuramos el problema en el mundo de la geometría poliédrica a través de dos zonotopos determinados por una matroide regular, demostrando que los volúmenes de estos zonotopos son iguales, y construyendo una biyección explícita entre ellos (fuera de un conjunto de medida cero). Generalizamos entonces al caso de una matroide con pesos. Concluimos mostrando que nuestra técnica pude ser usada para volver a demostrar el teorema clásico de Kirchhoff, puliendo los detalles cuando las matrices tienen corrango igual a uno. Este capítulo es fruto de trabajo conjunto con Julian Pfeifle. En el Capítulo 3 sacamos provecho de una conexión entre el zonotopo y el politopo de Lawrence generado por una representación íntegra (con coeficientes enteros) de una matroide racional para probar relaciones entre varios polinomios asociados con ellos. Primero demostramos una relación entre el polinomio de Ehrhart del zonotopo y el numerador de la serie de Ehrhart del politopo de Lawrence. Al nivel de matroides aritméticas esta relación nos permite ver el numerador de la serie de Ehrhart del politopo de Lawrence como el análogo, para matroides aritméticas, del usual h-vector de la matroide. Después de demostrar el resultado mencionado, lo usamos para ofrecer una nueva interpretación de los coeficientes de una evaluación particular del polinomio aritmético de Tutte. Finalmente mostramos que el h-vector de la matroide y la serie de Ehrhart del politopo de Lawrence coinciden cuando la representación es unimodular. En el Capítulo 4 consideramos una nueva clase de matroides, cuyo orden interno las vuelve especialmente dispuestas para demostrar la conjetura de Stanley. Esta conjetura dice que para cualquier matroide existe un ideal de orden puro cuya O-secuencia coincide con el h-vector de la matroide. Damos un breve repaso de los resultados conocidos en la Sección 4.1 antes de enfocarnos en las matroides ordenadas y el orden interno en la Sección 4.2, donde también definimos las bases y matroides internamente perfectas. En la Sección 4.3 probamos resultados preliminares sobre bases internamente perfectas culminando en el Teorema 4.11, dónde mostramos que, suponiendo la veracidad de cierta afirmación, cualquier matroide perfecta satisface la conjetura de Stanley. Por otra parte, conjeturamos que esta afirmación, en efecto, es válida para todas las matroides internamente perfectas.
Joint ALBCOM/COMBGRAPH Seminar
Thursday February 19, 2015, 17h15
C3-Room 005, Campus Nord, UPC
Jaroslav Nešetřil, IUUK MFF, Charles University Prague
Sparsity and fast algorithms for combinatorial problems
In the lecture we survey the recent actual development from the point of view sparse vs dense dichotomy.
(Joint work with P. Ossona de Mendez -Paris and Prague.)
Thursday February 19, 12h
C3-Room 005, Campus Nord, UPC
Jarek Grytczuk, Jagiellonian University in Krakow
Fanciful variations on non-repetitiveness
Thursday February 19, 11h
C3-Room 005, Campus Nord, UPC
Aida Abiad, Tilburg University, The Netherlands
Switched symplectic graphs and their 2-ranks
For the symplectic graph on 63 vertices we investigate repeated switching by computer and find many new strongly regular graphs with the same parameters but different 2-ranks.
By using these results and a recursive construction method for the symplectic graph from Hadamard matrices, we also obtain several graphs with the same parameters as the symplectic graphs over F_2, but different 2-ranks.
This is joint work with Willem Haemers.
Thursday November 20, 2014, 12h
C3-Room 005, Campus Nord, UPC
Simeon Ball, UPC Barcelona
Applications of the polynomial method in combinatorial geometry to Kakeya and Bourgain sets
In this talk I will consider Kakeya sets and Bourgain sets.
Let F be a field and let AG_k(F) denote the k-dimensional affine space over F. Let F_q denote the finite field with q elements.
A Kakeya set in AG_n(F) is a set L of lines with the property that L contains no two lines with the same direction. I will explain an iterative geometric construction of Kakeya sets in AG_n(F) starting from a Kakeya set in AG_2(F). I will say something about Dvir's proof (from [2]) that if L is a Kakeya set in AG_n(F) which contains a line in every direction then there is a constant c=c(n) such that if S is the set of points incident with some line of L then |S|>cq^n.
A Bourgain set in AG_n(F) is a set L of lines with the property that a plane contains few lines of L. Amongst other things I will sketch Guth and Katz's proof [3] that if L is a set of N^2 lines in AG_3(R), with at most N contained in any plane, and S is a set of points with the property that every line of L is incident with at least N points of S then there is a constant c such that |S|>cN^3.
Furthermore, I will talk about Ellenberg and Hablicsek's article [2] on the finite analogue of this in which L is a set of aq^2 lines in AG_3(F_q) with at most bq lines in a plane, for some constant b. They prove that if q is prime then there is a constant c=c(a,b) such that if S is the set of points incident with some line of L then |S|>cq^3. This does not hold true over non-prime finite fields and we shall also consider this finite non-prime case. I will also detail some results about Bourgain sets in higher dimensions.
[1] Zeev Dvir, On the size of Kakeya sets in finite fields, arXiv:0803.2336v3.
[2] Jordan S. Ellenberg and Márton Hablicsek, An incidence conjecture of Bourgain over fields of positive characteristic, arXiv:1311.1479v1.
[3] Larry Guth and Nets Hawk Katz, Algebraic methods in discrete analogs of the Kakeya problem, Adv. Math., 225 (2010), 2828--2839.
[4] Terence Tao, Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, arXiv:1310.6482v5.
Thursday October 30, 2014, 12h
C3-Room 005, Campus Nord, UPC
Klara Stokes, University of Skövde
Pentagonal maps of Moore graphs and geometric pentagonal geometries
Thursday October 23, 2014, 12h
C3-Room 005, Campus Nord, UPCFrancesc Aguiló, UPC Barcelona
Some Structural Properties of optimal diameter 2-Cayley digraphs on finite abelian groups
Joint work with A. Miralles and M. Zaragozá.
Thursday October 16, 2014, 12h
C3-Room 005, Campus Nord, UPC
Miquel Àngel Fiol, UPC Barcelona
Distance-regular graphs where the distance-d graph has fewer distinct eigenvalues
(joint work with A.E. Brouwer)
Thursday October 9, 2014, 12h
C3-Room 005, Campus Nord, UPCFelix Lazebnik, University of Delaware
On Graphs Defined by Some Systems of Equations
In many instances, specializations of these constructions have proved useful in various graph theory problems, but especially in many extremal problems which deal with cycles in graphs. I will explain motivations for these constructions, survey both old and new related results, applications, and state open questions.
Thursday October 2, 2014, 12h
C3-Room 005, Campus Nord, UPC
José Aliste-Prieto, Universidad Andrés Bello, Santiago de Chile
Share: