# GRAPHS WITH MAXIMAL ENERGY 

WILLEM HAEMERS

Tilburg University, The Netherlands



$$
A_{\Gamma}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$



$$
A_{\Gamma}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Eigenvalues: $0,-1, \frac{1}{2}(1 \pm \sqrt{17})$


$$
A_{\Gamma}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Eigenvalues: $0,-1, \frac{1}{2}(1 \pm \sqrt{17})$
Energy: $\mathcal{E}(\Gamma)=0+1+\frac{1}{2}(1+\sqrt{17})-\frac{1}{2}(1-\sqrt{17})=1+\sqrt{17}$
(Gutman 1978)

## PROPOSITION

$$
\begin{gathered}
\mathcal{E}\left(K_{n}\right)=2 n-2, \mathcal{E}\left(K_{k, k}\right)=n \\
\mathcal{E}(\Gamma+\Delta)=\mathcal{E}(\Gamma)+\mathcal{E}(\Delta), \quad \mathcal{E}(\Gamma \times \Delta)=\mathcal{E}(\Gamma) \mathcal{E}(\Delta) \\
\mathcal{E}(\Delta) \leq \mathcal{E}(\Gamma) \text { if } \Delta \text { is an induced subgraph of } \Gamma
\end{gathered}
$$

## THEOREM (Koolen and Moulton 2001) <br> $$
\mathcal{E}(\Gamma) \leq n(1+\sqrt{n}) / 2
$$

## THEOREM (Koolen and Moulton 2001) <br> $$
\mathcal{E}(\Gamma) \leq n(1+\sqrt{n}) / 2
$$

equality holds if and only if $\Gamma$ is a strongly regular graph with

$$
k=(n+\sqrt{n}) / 2, \lambda=\mu=(n+2 \sqrt{n}) / 4
$$

## THEOREM (Koolen and Moulton 2001)

$$
\mathcal{E}(\Gamma) \leq n(1+\sqrt{n}) / 2
$$

equality holds if and only if $\Gamma$ is a strongly regular graph with

$$
k=(n+\sqrt{n}) / 2, \lambda=\mu=(n+2 \sqrt{n}) / 4
$$



## THEOREM (Koolen and Moulton 2001) <br> $$
\mathcal{E}(\Gamma) \leq n(1+\sqrt{n}) / 2
$$

equality holds if and only if $\Gamma$ is a strongly regular graph with

$$
k=(n+\sqrt{n}) / 2, \lambda=\mu=(n+2 \sqrt{n}) / 4
$$

Max energy graph

Max energy graph for $n=4$


Max energy graph for $n=16$


$$
k=5, \lambda=0, \mu=2
$$

Complement $k=10, \lambda=\mu=6$ (Clebsch graph)

$$
\mathcal{E}(\text { Clebsch })=40
$$

Max energy graph for $n=36$

## THEOREM (McKay and Spence 2001)

There exist exactly 180 nonisomorphic max energy graphs with $n=36$

$$
k=21, \lambda=\mu=12, \mathcal{E}(\Gamma)=126
$$

## PROPOSITION

$\Gamma$ is a max energy graph if and only if $H=J-2 A_{\Gamma}$
is a regular graphical Hadamard matrix of negative type

## PROPOSITION

$\Gamma$ is a max energy graph if and only if $H=J-2 A_{\Gamma}$ is a regular graphical Hadamard matrix of negative type
$J:$ all-one matrix; $H:(+1,-1)$-matrix, $H H^{\top}=n I$,

$$
(H)_{i, i}=1, H=H^{\top}, H J=\ell J, \ell=-\sqrt{n} .
$$

## PROPOSITION

$\Gamma$ is a max energy graph if and only if $H=J-2 A_{\Gamma}$ is a regular graphical Hadamard matrix of negative type

## EXISTENCE

Necessary: $n=4 m^{2}$. Sufficient: $n=4 m^{4}$ (H and Xiang 2010),
$n=4 m^{2}$ and $m<11$. Several construction for even $m$.

## THEOREM (Nikiforov 2007)

Suppose $\Gamma$ has maximum energy over all graphs on $n$ vertices, then

$$
\mathcal{E}(\Gamma)=\frac{1}{2} n \sqrt{n}(1+o(1))
$$

## THEOREM (Nikiforov 2007)

Suppose $\Gamma$ has maximum energy over all graphs on $n$ vertices, then

$$
\mathcal{E}(\Gamma)=\frac{1}{2} n \sqrt{n}(1+o(1))
$$

PROOF: Take a smallest max energy graph with $m \geq n$ vertices and delete $m-n$ vertices (arbitrarily)


Energy per vertex $\mathcal{E}(\Gamma)=\mathcal{E}(\Gamma) / n$

Energy per vertex $\mathcal{E}(\Gamma)=\mathcal{E}(\Gamma) / n$

## CONJECTURE (AIM group 2006)

If $\Gamma$ is regular of degree $k$, then

$$
\overline{\mathcal{E}}(\Gamma) \leq \frac{k+\left(k^{2}-k\right) \sqrt{k-1}}{k^{2}-k+1}
$$

## Energy per vertex $\mathcal{E}(\Gamma)=\mathcal{E}(\Gamma) / n$

## CONJECTURE (AIM group 2006)

If $\Gamma$ is connected and regular of degree $k$, then

$$
\overline{\mathcal{E}}(\Gamma) \leq \frac{k+\left(k^{2}-k\right) \sqrt{k-1}}{k^{2}-k+1}
$$

Equality holds if and only if $\Gamma$ is the incidence graph of a projective plane of order $k-1$ or, when $k=2$, a hexagon or a triangle
$k=3$


Incidence graph of the Fano plane (Heawood graph)

$$
\overline{\mathcal{E}}(\Gamma)=(3+6 \sqrt{2}) / 7 \approx 1.64
$$

## Energy per vertex $\mathcal{E}(\Gamma)=\mathcal{E}(\Gamma) / n$

## CONJECTURE (AIM group 2006)

If $\Gamma$ is connected and regular of degree $k$, then

$$
\overline{\mathcal{E}}(\Gamma) \leq \frac{k+\left(k^{2}-k\right) \sqrt{k-1}}{k^{2}-k+1}
$$

Equality holds if and only if $\Gamma$ is the incidence graph of a projective plane of order $k-1$ or, when $k=2$, a hexagon or a triangle

THEOREM (van Dam, H, Koolen 2012)
If $\Gamma$ is connected and regular of degree $k$, then

$$
\overline{\mathcal{E}}(\Gamma) \leq \frac{k+\left(k^{2}-k\right) \sqrt{k-1}}{k^{2}-k+1}
$$

Equality holds if and only if $\Gamma$ is the incidence graph of a projective plane of order $k-1$ or, when $k=2$, a hexagon or a triangle

PROOF: $\overline{\mathcal{E}}(\Gamma)=\overline{\mathcal{E}}\left(\Gamma \times K_{2}\right)$, so we can assume $\Gamma$ is bipartite

Eigenvalues of $A_{\Gamma}: k=\lambda_{1} \geq \cdots \geq \lambda_{n}$

PROOF: $\mathcal{E}(\Gamma)=\overline{\mathcal{E}}\left(\Gamma \times K_{2}\right)$, so we can assume $\Gamma$ is bipartite Apply Karush-Kuhn-Tucker to maximize $\Sigma\left|\lambda_{i}\right|$, subject to

$$
\lambda_{i}=-\lambda_{n+1-i},\left|\lambda_{i}\right| \leq k, \Sigma \lambda_{i}^{2}=k n, \Sigma \lambda_{i}^{4} \geq n k(2 k-1)
$$

## EXISTENCE

Necessary: If $k \equiv 2$ or $3(\bmod 4)$, then $k-1$ is the sum of two squares; $k \neq 11$. Sufficient: $k-1$ is a prime power

## EXISTENCE

Necessary: If $k \equiv 2$ or $3(\bmod 4)$, then $k-1$ is the sum of two squares; $k \neq 11$. Sufficient: $k-1$ is a prime power

THEOREM (van Dam, H, Koolen 2012)
If $\Gamma$ is $k$-regular with maximal $\mathcal{E}(\Gamma)$, then $\mathcal{E}(\Gamma)=\sqrt{k}(1+o(1))$

## EXISTENCE

Necessary: If $k \equiv 2$ or $3(\bmod 4)$, then $k-1$ is the sum
of two squares; $k \neq 11$. Sufficient: $k-1$ is a prime power

THEOREM (van Dam, H, Koolen 2012)
If $\Gamma$ is $k$-regular with maximal $\mathcal{E}(\Gamma)$, then $\mathcal{E}(\Gamma)=\sqrt{k}(1+o(1))$

PROOF: Take a projective plane of smallest order $\ell>k$. Delete a flag. The remaining geometry is an elliptic semi-plane with point and line parallel classes. Delete $\ell-k+1$ point and line classes. The incidence graph $\Gamma$ is $k$-regular and $\overline{\mathcal{E}}(\Gamma) \approx \sqrt{k}$.



Eigenvalues: $\pm 1, \pm \sqrt{5}$
Seidel Energy: $\mathcal{E}_{s}(\Gamma)=2+2 \sqrt{5}$

## PROPOSITION

$$
\mathcal{E}_{s}\left(K_{n}\right)=2 n-2, \quad \mathcal{E}_{s}\left(K_{k, n-k}\right)=2 n-2
$$

$\mathcal{E}_{s}(\Gamma)$ is invariant under complementation and Seidel switching

$$
\mathcal{E}_{s}(\Delta) \leq \mathcal{E}_{s}(\Gamma) \text { if } \Delta \text { is an induced subgraph of } \Gamma
$$

## THEOREM

$$
\mathcal{E}_{s}(\Gamma) \leq n \sqrt{n-1}
$$

Equality holds if and only if $S_{\Gamma}$ is a symmetric conference matrix

## THEOREM

$$
\mathcal{E}_{s}(\Gamma) \leq n \sqrt{n-1}
$$

Equality holds if and only if $S_{\Gamma}$ is a symmetric conference matrix

$$
S_{\Gamma}^{2}=(n-1) I
$$

## THEOREM

$$
\mathcal{E}_{s}(\Gamma) \leq n \sqrt{n-1}
$$

Equality holds if and only if $S_{\Gamma}$ is a symmetric conference matrix

Max $S$-energy graph

Max $S$-energy graph for $n=6$


$$
\mathcal{E}_{s}\left(\text { Pentagon }+K_{1}\right)=6 \sqrt{5}
$$

Max $S$-energy graph for $n=10$

$\mathcal{E}_{s}($ Petersen $)=30$

## EXISTENCE

Necessary: $n \equiv 2(\bmod 4), n-1$ is sum of two squares Sufficient: $n \equiv 2(\bmod 4)$ and $n-1$ is a prime power

## THEOREM

Suppose $\Gamma$ has maximal $\mathcal{E}_{s}(\Gamma)$ over all graphs on $n$ vertices, then

$$
\mathcal{E}_{s}(\Gamma)=n \sqrt{n}(1+o(1))
$$

## THEOREM

Suppose $\Gamma$ has maximal $\mathcal{E}_{s}(\Gamma)$ over all graphs on $n$ vertices, then

$$
\mathcal{E}_{s}(\Gamma)=n \sqrt{n}(1+o(1))
$$

PROOF: Take a smallest max $S$-energy graph with $m \geq n$ vertices and add $m-n$ vertices (arbitrarily)

## MINIMUM ENERGY

## $\mathcal{E}(\Gamma) \geq 0$, equality iff $\Gamma$ has no edges

$\Gamma$ is $k$-regular, then $\mathcal{E}(\Gamma) \geq 1$, equality iff $\Gamma=m K_{k, k}$

$$
\mathcal{E}_{s}(\Gamma) \geq \sqrt{2 n(n-1)} \text {, equality impossible if } n>2
$$

## CONJECTURE

$$
\mathcal{E}_{s}(\Gamma) \geq 2(n-1)
$$

True if $n \leq 10$ (Swinkels 2010)
True if $\left|\operatorname{det} S_{\Gamma}\right| \geq n-1$ (Ghorbani 2013)

- E.R. van Dam, W.H. Haemers and J.H. Koolen, Regular graphs with maximal energy per vertex, arXiv:1210.8273.
- E. Ghorbani, On eigenvalues of Seidel matrices and Haemers' conjecture, arXiv:1301.0075.
- W.H. Haemers, Strongly regular graphs with maximal energy, Linear Algebra and its Applications 429 (2008), 2719-2723.
- W.H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012), 653-659.
- W.H. Haemers and Q. Xiang, Strongly regular graphs with parameters $\left(4 m^{4}, 2 m^{4}+m^{2}, m^{4}+m^{2}, m^{4}+m^{2}\right)$ exist for all $m>1$, European Journal of Combinatorics 31 (2010), 1553-1559.
- J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. in Appl. Math. 26 (2001), 47-52.
- X.Li, Y.Shi and I.Gutman, Graph Energy, Springer, 2012.

