GRAPHS WITH MAXIMAL ENERGY

WILLEM HAEMERS

Tilburg University, The Netherlands

Eigenvalues: 0, -1, $\frac{1}{2}(1 \pm \sqrt{17})$

Eigenvalues: 0, -1, $\frac{1}{2}(1 \pm \sqrt{17})$ **Energy:** $\mathcal{E}(\Gamma) = 0 + 1 + \frac{1}{2}(1 + \sqrt{17}) - \frac{1}{2}(1 - \sqrt{17}) = 1 + \sqrt{17}$ (Gutman 1978)

 $\mathcal{E}(K_n) = 2n - 2, \ \mathcal{E}(K_{k,k}) = n$ $\mathcal{E}(\Gamma + \Delta) = \mathcal{E}(\Gamma) + \mathcal{E}(\Delta), \ \mathcal{E}(\Gamma \times \Delta) = \mathcal{E}(\Gamma)\mathcal{E}(\Delta)$ $\mathcal{E}(\Delta) \le \mathcal{E}(\Gamma) \text{ if } \Delta \text{ is an induced subgraph of } \Gamma$

equality holds if and only if Γ is a strongly regular graph with

$$k = (n + \sqrt{n})/2, \ \lambda = \mu = (n + 2\sqrt{n})/4$$

equality holds if and only if Γ is a strongly regular graph with

$$k = (n + \sqrt{n})/2, \ \lambda = \mu = (n + 2\sqrt{n})/4$$

equality holds if and only if Γ is a strongly regular graph with

$$k = (n + \sqrt{n})/2, \ \lambda = \mu = (n + 2\sqrt{n})/4$$

Max energy graph

Max energy graph for n = 4

Max energy graph for n = 16

$$k=5, \ \lambda=0, \ \mu=2$$

Complement $k = 10, \ \lambda = \mu = 6$ (Clebsch graph) $\mathcal{E}(\text{Clebsch}) = 40$ Max energy graph for n = 36

THEOREM (McKay and Spence 2001)

There exist exactly 180 nonisomorphic max energy graphs with n = 36

$$k = 21, \ \lambda = \mu = 12, \ \mathcal{E}(\Gamma) = 126$$

 Γ is a max energy graph **if and only if** $H = J - 2A_{\Gamma}$ is a regular graphical Hadamard matrix of negative type

 Γ is a max energy graph **if and only if** $H = J - 2A_{\Gamma}$ is a regular graphical Hadamard matrix of negative type

J: all-one matrix; H: (+1, -1)-matrix, $HH^{\top} = nI$, $(H)_{i,i} = 1, H = H^{\top}, HJ = \ell J, \ell = -\sqrt{n}.$

 Γ is a max energy graph **if and only if** $H = J - 2A_{\Gamma}$ is a regular graphical Hadamard matrix of negative type

EXISTENCE

Necessary: $n = 4m^2$. **Sufficient:** $n = 4m^4$ (H and Xiang 2010), $n = 4m^2$ and m < 11. Several construction for even m.

THEOREM (Nikiforov 2007)

Suppose Γ has maximum energy over all graphs on n vertices, then

$$\mathcal{E}(\Gamma) = \frac{1}{2}n\sqrt{n}(1+o(1))$$

THEOREM (Nikiforov 2007)

Suppose Γ has maximum energy over all graphs on n vertices, then $\mathcal{E}(\Gamma) = \tfrac{1}{2} n \sqrt{n} (1+o(1))$

PROOF: Take a smallest max energy graph with $m \ge n$ vertices

and delete m-n vertices (arbitrarily)

AIM, Palo Alto, October 2006

360

CONJECTURE (AIM group 2006)

If Γ is regular of degree k, then

$$\overline{\mathcal{E}}(\Gamma) \leq \frac{k + (k^2 - k)\sqrt{k - 1}}{k^2 - k + 1}$$

CONJECTURE (AIM group 2006)

If Γ is connected and regular of degree k, then

$$\overline{\mathcal{E}}(\Gamma) \leq \frac{k + (k^2 - k)\sqrt{k - 1}}{k^2 - k + 1}$$

Equality holds if and only if Γ is the incidence graph of a

projective plane of order k-1 or, when k=2, a hexagon or a triangle

k = 3

Incidence graph of the Fano plane (Heawood graph) $\overline{\mathcal{E}}(\Gamma) = (3 + 6\sqrt{2})/7 \approx 1.64$

CONJECTURE (AIM group 2006)

If Γ is connected and regular of degree k, then

$$\overline{\mathcal{E}}(\Gamma) \leq \frac{k + (k^2 - k)\sqrt{k - 1}}{k^2 - k + 1}$$

Equality holds if and only if Γ is the incidence graph of a

projective plane of order k-1 or, when k=2, a hexagon or a triangle

THEOREM (van Dam, H, Koolen 2012) If Γ is connected and regular of degree k, then

$$\overline{\mathcal{E}}(\Gamma) \leq \frac{k + (k^2 - k)\sqrt{k - 1}}{k^2 - k + 1}$$

Equality holds if and only if Γ is the incidence graph of a

projective plane of order k-1 or, when k=2, a hexagon or a triangle

PROOF: $\overline{\mathcal{E}}(\Gamma) = \overline{\mathcal{E}}(\Gamma \times K_2)$, so we can assume Γ is bipartite

Eigenvalues of A_{Γ} : $k = \lambda_1 \ge \cdots \ge \lambda_n$

PROOF: $\overline{\mathcal{E}}(\Gamma) = \overline{\mathcal{E}}(\Gamma \times K_2)$, so we can assume Γ is bipartite Apply Karush-Kuhn-Tucker to maximize $\Sigma |\lambda_i|$, subject to $\lambda_i = -\lambda_{n+1-i}, \ |\lambda_i| \le k, \ \Sigma \lambda_i^2 = kn, \ \Sigma \lambda_i^4 \ge nk(2k-1)$

Necessary: If $k \equiv 2 \text{ or } 3 \pmod{4}$, then k - 1 is the sum

of two squares; $k \neq 11$. Sufficient: k - 1 is a prime power

Necessary: If $k \equiv 2$ or 3 (mod 4), then k - 1 is the sum

of two squares; $k \neq 11$. Sufficient: k - 1 is a prime power

THEOREM (van Dam, H, Koolen 2012)

If Γ is k-regular with maximal $\overline{\mathcal{E}}(\Gamma)$, then $\overline{\mathcal{E}}(\Gamma) = \sqrt{k}(1 + o(1))$

Necessary: If $k \equiv 2$ or 3 (mod 4), then k - 1 is the sum

of two squares; $k \neq 11$. Sufficient: k - 1 is a prime power

THEOREM (van Dam, H, Koolen 2012)

If Γ is k-regular with maximal $\overline{\mathcal{E}}(\Gamma)$, then $\overline{\mathcal{E}}(\Gamma) = \sqrt{k(1+o(1))}$

PROOF: Take a projective plane of smallest order $\ell > k$. Delete a flag. The remaining geometry is an elliptic semi-plane with point and line parallel classes. Delete $\ell - k + 1$ point and line classes. The incidence graph Γ is k-regular and $\overline{\mathcal{E}}(\Gamma) \approx \sqrt{k}$.

Eigenvalues: $\pm 1, \pm \sqrt{5}$

Seidel Energy: $\mathcal{E}_s(\Gamma) = 2 + 2\sqrt{5}$

$$\mathcal{E}_s(K_n) = 2n - 2, \quad \mathcal{E}_s(K_{k,n-k}) = 2n - 2$$

 $\mathcal{E}_s(\Gamma)$ is invariant under complementation and Seidel switching $\mathcal{E}_s(\Delta) \leq \mathcal{E}_s(\Gamma)$ if Δ is an induced subgraph of Γ

$\mathcal{E}_s(\Gamma) \le n\sqrt{n-1}$

Equality holds if and only if S_{Γ} is a symmetric conference matrix

$\mathcal{E}_s(\Gamma) \le n\sqrt{n-1}$

Equality holds if and only if S_{Γ} is a symmetric conference matrix

 $S_{\Gamma}^2 = (n-1)I$

$\mathcal{E}_s(\Gamma) \le n\sqrt{n-1}$

Equality holds if and only if S_{Γ} is a symmetric conference matrix

 $\mathbf{Max}\ S\textbf{-energy}\ \mathbf{graph}$

Max S-energy graph for n = 6

 $\mathcal{E}_s(\text{Pentagon} + K_1) = 6\sqrt{5}$

Max S-energy graph for n = 10

 $\mathcal{E}_s(\text{Petersen}) = 30$

Necessary: $n \equiv 2 \pmod{4}$, n - 1 is sum of two squares **Sufficient:** $n \equiv 2 \pmod{4}$ and n - 1 is a prime power

Suppose Γ has maximal $\mathcal{E}_s(\Gamma)$ over all graphs on *n* vertices, then

$$\mathcal{E}_s(\Gamma) = n\sqrt{n}(1+o(1))$$

Suppose Γ has maximal $\mathcal{E}_s(\Gamma)$ over all graphs on n vertices, then $\mathcal{E}_s(\Gamma) = n\sqrt{n}(1+o(1))$

PROOF: Take a smallest max S-energy graph with $m \ge n$ vertices and add m-n vertices (arbitrarily)

MINIMUM ENERGY

 $\mathcal{E}(\Gamma) \geq 0$, equality **iff** Γ has no edges

 Γ is k-regular, then $\overline{\mathcal{E}}(\Gamma) \geq 1$, equality **iff** $\Gamma = mK_{k,k}$

 $\mathcal{E}_s(\Gamma) \ge \sqrt{2n(n-1)}$, equality impossible if n > 2

CONJECTURE

 $\mathcal{E}_s(\Gamma) \ge 2(n-1)$

True if $n \leq 10$ (Swinkels 2010) True if $|\det S_{\Gamma}| \geq n - 1$ (Ghorbani 2013)

- E.R. van Dam, W.H. Haemers and J.H. Koolen, Regular graphs with maximal energy per vertex, arXiv:1210.8273.
- E. Ghorbani, On eigenvalues of Seidel matrices and Haemers' conjecture, arXiv:1301.0075.
- W.H. Haemers, Strongly regular graphs with maximal energy, Linear Algebra and its Applications 429 (2008), 2719–2723.
- W.H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012), 653–659.
- W.H. Haemers and Q. Xiang, Strongly regular graphs with parameters $(4m^4, 2m^4+m^2, m^4+m^2, m^4+m^2)$ exist for all m > 1, European Journal of Combinatorics 31 (2010), 1553–1559.
- J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. in Appl. Math. 26 (2001), 47-52.
- X.Li, Y.Shi and I.Gutman, Graph Energy, Springer, 2012.