Location and domination in graphs.

Mercè Mora

Dept. Matemàtica Aplicada II Universitat Politècnica de Catalunya

Seminari COMBGRAF Barcelona, 30 de gener de 2014

Outline

Detection devices and graphs

Parameters

Location, Domination and Location-domination Identifying codes and watching systems

Properties

Values

Bounds

Extremal values

Realization Theorems

Location-Domination in G and \overline{G}

General results

Block-cactus

Bipartite graphs

Global Location-domination

Detection devices and graphs

Graphs are used to model some problems:

detection devices located at some vertices to detect/locate an intruder in some vertex, ...of course with a small number of detectors

Detection: is there any intruder?

Location: where is the intruder?

Detection devices and graphs

Graphs are used to model some problems:

detection devices located at some vertices to detect/locate an intruder in some vertex, ...of course with a small number of detectors

- Detection: is there any intruder?
 Dominating sets
- Location: where is the intruder?
 Locating sets

Restrictions on detection devices

- Detect if there is an intruder in its neighborhood → 0,1
- Detect it there is an intruder at distance $\leq k \rightarrow 0, 1$
- Detect if there is an intruder at distance $= k \rightarrow k$

Restrictions on detection devices

- At most one detection device at a vertex
- One or more detection devices at a vertex

- Detect an intruder located at any vertex of the graph
- Detect an intruder in a subset of vertices

Restrictions on detection devices

- At most one detection device at a vertex
- One or more detection devices at a vertex

- Detect an intruder located at any vertex of the graph
- Detect an intruder in a subset of vertices

Questions

- Bounds relating different parameters
- Bounds relating order, size, diameter, Δ , δ ,...
- Values on some families: complete graphs, paths, cycles, wheels, bipartite graphs, trees,...
- Extremal values
- · Realization type results
- Graph operations: Cartesian product, strong product, complement,...
- Nordhaus-Gaddum type bounds: $p(G) + p(\overline{G})$

Graphs

$$G = (V, E)$$
 graph,

- G, complement of G
- $N(v) = \{u : uv \in E\}$, open neighborhood
- $N[v] = \{v\} \cup N(v)$, closed neighborhood
- true-twin vertices: $u, v \in V$ such that N[u] = N[v]
- false-twin vertices: $u, v \in V$ such that N(u) = N(v)

Domination

- Dominating set of G, $S \subseteq V$: for all $v \in V \setminus S$, $S \cap N(v) \neq \emptyset$
- Domination number of G, γ(G): minimum size of a dominating set of G

Dominating set

$$\gamma(G) = 3$$

Location [Slater (1975), Harary and Melter (1976)]

- Locating set/Resolving set of G, S ⊆ V: every vertex is uniquely determined by its vector of distances to the vertices of S
- Location number/Metric dimension of G, $\beta(G)$: minimum size of a locating set of G
- Locating code/Metric basis of G: locating and dominating set of minimum size

Location and domination [Henning and Oellermann, 2004)

- Locating and dominating set (MLD-set) of G, $S \subseteq V$:
 - dominating set of G
 - locating set of G
- Location and domination number, η(G):
 minimum size of a locating and dominating set of G
- Locating and dominating code of G: locating and dominating set of minimum size

$$|\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$$

Location-domination [Slater, 1988]

- Locating-dominating set (LD-set) of $G, S \subseteq V$:
 - dominating set of G
 - $N_G(u) \cap S \neq N_G(v) \cap S$, if $u, v \in V \setminus S$, $u \neq v$
- Location-domination number, λ(G):
 minimum size of a locating-dominating set of G
- Locating-dominating code (LD-code) of G:
 LD-set of minimum size

Location-Domination

- ▶ S LD-set $\Rightarrow S$ dominating set
- S LD-set ⇒ S locating set
 - $ightharpoonup \gamma(G) \leq \lambda(G)$
 - ▶ $\beta(G) \leq \lambda(G)$

$$|\max\{\gamma(G),\beta(G)\} \le \eta(G) \le \lambda(G)$$

Location and Domination/Location-Domination

Location and Domination/Location-Domination

$$S = \{u_1, \dots, u_r\}$$

$$x \in V \setminus S \longrightarrow \ell(x) = (x_1, \dots, x_r)$$

Param.	Xi	Conditions	
γ	$\begin{cases} 1, & \text{if } x \in N(u_i); \\ 0, & \text{otherwise.} \end{cases}$	$\exists x_i = 1$	
β	$d(x,u_i)$	$\ell(x) \neq \ell(y)$, if $x \neq y$	
η	$d(x,u_i)$	$\exists x_i = 1 \ell(x) \neq \ell(y), \text{ if } x \neq y$	
λ	$\begin{cases} 1, & \text{if } x \in N(u_i); \\ 0, & \text{otherwise.} \end{cases}$	$\exists x_i = 1 \ell(x) \neq \ell(y), \text{ if } x \neq y$	

Identifying codes [Karpovsky, Chakrabarty and Levitin, 1998]

- Identifying set of G, S ⊆ V:
 - dominating set of G
 - $N_G[u] \cap S \neq N_G[v] \cap S$, if $u, v \in V$, $u \neq v$
- Identifying number, ι(G):
 minimum size of an identifying set of G
- Identifying code of G: identifying set of minimum size

Identifying codes exist only in true-twin free graphs

$$\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \lambda(G) \le \iota(G)$$

Watching systems [Auger, Charon, Hudry and Lobstein, 2013]

- watcher: $w_i = (v_i, A_i)$, where $w_i = (v_i, A_i)$, $v_i \in V$, $A_i \subseteq N[v_i]$
- *label* of $u \in V$: $L(u) = \{w_i : u \in A_i\}$
- watching system: $S = \{w_i : i \in I\}$ such that $L(u) \neq \emptyset$ for all $u \in V$ $L(u) \neq L(v)$ if $u \neq v$
- watching number, ω(G):
 minimum size of a watching system set of G

Watching systems exist in all graphs

$$\omega(G) \le \gamma(G) \lceil \log_2(\Delta + 2) \rceil$$

$$\omega(G) \le \iota(G)$$
 if G is twin-free

Watching number: example

$$G = K_{1,6}$$
: $i(G) = 6$, $\omega(G) = 3$
 $W = \{w_1, w_2, w_3\}$, $I(w_i) = 7$
 $A(w_1) = \{1, 4, 5, 7\}$, $A(w_2) = \{2, 4, 6, 7\}$, $A(w_3) = \{3, 5, 6, 7\}$

Some families

	$P_{n (n \geq 4)}$	C_{n} ($n \ge 3$)	$K_{n (n \geq 2)}$	$K_{1,n-1}$ ($n \ge 3$)	$K_{r,s}$ (2 $\leq r \leq s$)
$\gamma(G)$	$\lceil \frac{n}{3} \rceil$	$\lceil \frac{n}{3} \rceil$	1	1	2
$\beta(G)$	1	2	<i>n</i> − 1	n – 2	n – 2
$\eta({\it G})$	\[\left[\frac{n}{3} \right] \]	$\lceil \frac{n}{3} \rceil$	<i>n</i> − 1	<i>n</i> − 1	n-2
$\lambda(G)$	$\lceil \frac{2n}{5} \rceil$	$\lceil \frac{2n}{5} \rceil$	<i>n</i> − 1	<i>n</i> − 1	<i>n</i> – 2
	$P_{n (n \geq 4)}$	C_{n} $(n \ge 7)$	$K_{n (n \geq 2)}$	$K_{1,n-1}$ ($n \ge 3$)	$K_{r,s}$ (2 $\leq r \leq s$)
$\iota(G)$	$\lceil \frac{n+1}{2} \rceil$	$3\lceil \frac{n}{2} \rceil - n$	_	n – 1	n – 2
$\omega(G)$	$\lceil \frac{n+1}{2} \rceil$	$\lceil \frac{n}{2} \rceil$	$\lceil \log_2(n+1) \rceil$	$\lceil \log_2(n+1) \rceil$	(*)

(*) [Hernando, Mora and Pelayo, 2012]

Bounds

$$G = (V, E), |V| = n, diam(G) = D \ge 3,$$

- $\beta + D \le n \le \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lfloor D/3 \rfloor} (2i 1)^{\beta 1}$ [Hernando, Mora, Pelayo, Seara and Wood, 2010]
- $\eta + \left\lceil \frac{2D}{3} \right\rceil \le n \le \eta (3^{\eta 1} + 1)$, if $G \ncong K_{1, n 1}$ [Cáceres, Hernando, Mora, Pelayo and Puertas, 2013]
- $\lambda + \left\lceil \frac{3D-1}{5} \right\rceil \le n \le \lambda + 2^{\lambda} 1$ [Cáceres, Hernando, Mora, Pelayo and Puertas, 2013]

All bounds are tight!

Bounds

$$G = (V, E), |V| = n$$

- $\iota + 1 \le n \le 2^{\iota} 1$, if *G* is true-twin free [Karpovsky, Chakrabarty and Levitin, 1998]
- n ≤ 2^ω − 1
 [Auger, Charon, Hudry and Lobstein, 2010]
- $\omega(G) \leq \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry and Lobstein, 2010]

Small values of $\eta(G)$ and $\lambda(G)$

- There are 51 non isomorphic graphs satisfying $\eta(G) = 2$
- There are 16 non isomorphic graphs satisfying $\lambda(G)=2$ [Cáceres, Hernando, Mora, Pelayo and Puertas, 2013]

Large values of $\eta(G)$ and $\lambda(G)$

- $\eta(G) = n 1 \Leftrightarrow G \cong K_n, K_{1,n-1}$ [Henning and Oellermann, 2004]
- $\lambda(G) = n 1 \Leftrightarrow G \cong K_n, K_{1,n-1}$ [Slater, 1988]
- Graphs satisfying $\eta(G) = n 2$ [Henning and Oellermann, 2004]
- Graphs satisfying $\lambda(G) = n 2$: $\eta(G) = n 2 \iff \lambda(G) = n 2$ [Cáceres, Hernando, Mora, Pelayo and Puertas, 2013]

Realization Theorems

[Cáceres, Hernando, Mora, Pelayo and Puertas, 2013]

• *G* graph, $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$

$$a,b,c\in\mathbb{N}, \quad \max\{a,b\}\leq c\leq a+b \Rightarrow \exists G \text{ graph satisfying } \gamma(G)=a,\beta(G)=b,\eta(G)=c, \text{ except if } 1=b< a< c=a+1$$

• T tree, $|V(T)| \ge 3$, $T \ncong P_6 \left| \eta(T) \le \lambda(T) \le 2\eta(T) - 2 \right|$

$$a, b \in \mathbb{N}$$
, $3 \le a \le b \le 2a - 2 \Rightarrow \exists T$ tree satisfying $\eta(T) = a, \lambda(T) = b$

$\lambda(G)$ Versus $\lambda(G)$ [Hernando, Mora and Pelayo (2013)]

S LD-set of G = (V, E):

- dominating set of G
- $N_G(u) \cap S \neq N_G(v) \cap S$, if $u, v \in V \setminus S$, $u \neq v$
- $\blacktriangleright \ \ N_G(x) \cap S \neq N_G(y) \cap S \Leftrightarrow N_{\overline{G}}(x) \cap S \neq N_{\overline{G}}(y) \cap S$

$\lambda(G)$ versus $\lambda(\overline{G})$

S LD-set of G, then

- ▶ S LD-set of $\overline{G} \Leftrightarrow S$ dominating set of \overline{G} .
- ▶ *S* LD-set of $\overline{G} \Leftrightarrow \nexists u \in V \setminus S$, *u* dominates *S* in *G*.
- ▶ $\exists u \in V \setminus S$, u dominates S in G⇒ $S \cup \{u\}$ is an LD-set of \overline{G}

$$|\lambda(G) - \lambda(\overline{G})| \leq 1$$

Global LD-sets

- global LD-set of G: LD-set of G and of \overline{G} i.e., $\nexists u \in V \setminus S$, u dominates S in G.
- ▶ *G* contains a global LD-code $\Rightarrow \lambda(\overline{G}) \leq \lambda(G)$

Graphs satisfying
$$\lambda(\overline{G}) = \lambda(G) + 1$$
?

Global LD-sets

G contains a non-global LD-set $S \Rightarrow$

- ▶ $\exists u \in V \setminus S$, *u* dominates *S*
- ightharpoonup ecc(u) \leq 2, rad(G) \leq 2, diam(G) \leq 4

$$\lambda(\overline{G}) = \lambda(G) + 1 \Rightarrow$$

- \Rightarrow every LD-code of G is non-global
- \Rightarrow *G* connected and diam(*G*) \leq 4

Block-cactus

- Block of G = (V, E): maximally connected subgraph with no cut vertices
- Cactus: connected graph s.t. all blocks are cycles or K₂,
 i.e., there is no edge lying on two different cycles
- Block-cactus: connected graph s.t. all blocks are cycles or complete graphs

Families of block-cactus

Block-cactus

Block-cactus s.t.
$$\lambda(\overline{G}) = \lambda(G) + 1$$

G is one of the following graphs:

$$K_{r, r \geq 2}$$

$$K_{r, r \geq 2}$$

$$K_{r, r \geq 2}$$

$$K_{r, r \geq 2}$$

$$K_{r, r \geq 1}$$

$$K_{r_t, r_t \geq 2}$$

$$K_{r_t, r_t \geq 2}$$

▶ T tree of order \geq 3 \Rightarrow $\lambda(\overline{T}) \leq \lambda(T)$

Bipartite graphs

Bipartite graphs s.t.
$$\lambda(\overline{G}) = \lambda(G) + 1$$

$$G = (V, E) \ V = V_1 \cup V_2, |V_1| = r, |V_2| = s, 2 \le r \le s$$

- $ightharpoonup r=1,2\Rightarrow \lambda(\overline{G})\leq \lambda(G)$
- S LD-code of G
 - $S \cap V_1 \neq \emptyset$ and $S \cap V_2 \neq \emptyset \Rightarrow \lambda(\overline{G}) \leq \lambda(G)$.
 - $S = V_2$ and $r < s \Rightarrow \lambda(\overline{G}) \le \lambda(G)$.

Bipartite graphs satisfying $\lambda(\overline{G}) = \lambda(G) + 1$

$$G = (V, E), V = V_1 \cup V_2, |V_1| = r, |V_2| = s, 3 \le r \le s$$

Theorem

$$\lambda(\overline{G}) = \lambda(G) + 1 \Rightarrow \frac{3r}{2} \leq s \leq 2^r - 1$$

Proof.

$$\lambda(\overline{G}) = \lambda(G) + 1 \Rightarrow V_1$$
 LD-code of G

$$s \leq 2^r - 1$$

$$V_1$$
 LD-code $\Rightarrow s \leq 2^r - 1$

Proof of $\frac{3r}{2} \leq s$

$$\frac{3r}{2} \leq s$$

 $\forall v \in V_1, V_1 \setminus \{v\}$ is not an LD-set:

Proof of $\frac{3r}{2} \leq s$: the graph G^*

 G^* edge-labeled graph associated to G:

- $V(G^*) = V_2 \cup \{w_0\}, w_0 \notin V_2 \text{ and define } N(w_0) = \emptyset$
- $w_h w_k \in E(G^*) \Leftrightarrow N(w_h) \oplus N(w_k) = \{v\}$ for some $v \in V_1$
- $\ell(w_h w_k) = N(w_h) \oplus N(w_k) \in V_1$

Example of graph G*

$$V_1 = \{1, 2, 3, 4, 5\}$$

 $V_2 = \!\! \{[12345], [1234], [1245], [134], [234], [245], [13], [15], [34], [1], [3]\}$

Proof of $\frac{3r}{2} \leq s$ using the graph G^*

 V_1 LD-code and \nexists LD-code with vertices in both stable sets $\Rightarrow G^*$ satisfies:

- $|V(G^*)| = s + 1, |E(G^*)| \ge 2r$
- G* is bipartite
- incident edges have different labels
- walks contain an even number of edges with label v, $\forall v \in V_1$, iff they are closed
- G* contains a subgraph H* of size 2r such that all its connected components are cactus
- *G* with cc. cactus with no C_3 , then $|E(G)| \leq \frac{4}{3}(|V(G)| 1)$.

$$\Rightarrow s \geq \frac{3r}{2}$$

Bipartite graphs with $\lambda(\overline{G}) - \lambda(G) \in \{-1, 0, 1\}$

Given integers $r, s, 3 \le r \le s$ there are bipartite graphs G with stable parts V_1 , V_2 satisfying $|V_1| = r$, $|V_2| = s$ and:

- $\lambda(\overline{G}) = \lambda(G) 1$: double star $K_2(r-1, s-1)$
- $\lambda(\overline{G}) = \lambda(G)$: complete bipartite graphs K(r, s)

• $\lambda(\overline{G}) = \lambda(G) + 1$, if $\frac{3r}{2} + 1 \le s \le 2^r - 1$: G(r, s)

Bipartite graphs with $\lambda(\overline{G}) = \lambda(G) + 1$

• (r,s), $r,s \in \mathbb{N}$, $3 \le r$ and $\frac{3r}{2} + 1 \le s \le 2^r - 1$, $\exists G(r,s)$ bipartite graph such that $\lambda(\overline{G}) > \lambda(G)$.

$$V_1 = \{1, 2, \dots, r\} \text{ and } s = \left\lceil \frac{3r}{2} + 1 \right\rceil$$
:

Global domination [Brigham and Carrington, 1998]

- S ⊆ V, global dominating set of G: a dominating set of G and of G
- global domination number, γ_g(G):
 minimum size of a global dominating set of G

Global LD-number

- global LD-number of G: minimum size of a global LD-set
- $\checkmark \lambda_g(G) = \lambda_g(\overline{G})$

For any graph G = (V, E),

- $\lambda(G) \leq \lambda_g(G) \leq \lambda(G) + 1$
- $\lambda_g(G) = \lambda(G) \Longleftrightarrow G$ has a global LD-code $\lambda_g(G) = \lambda(G) + 1 \Longleftrightarrow$ every LD-code of G is non-global
- $\lambda(\overline{G}) \neq \lambda(G) \Rightarrow \lambda_g(G) = \max\{\lambda(G), \lambda(\overline{G})\}\$ $\lambda(\overline{G}) = \lambda(G) \Rightarrow \lambda_g(G) \in \{\lambda(G), \lambda(G) + 1\}\$

Some values

$$\begin{array}{c|ccccc} & P_{n\ (\geq 7)} & C_{n\ (\geq 7)} & W_{n\ (n\geq 8)} & K_{n\ (n\geq 3)} \\ \hline \lambda(G) & \lceil \frac{2n}{5} \rceil & \lceil \frac{2n}{5} \rceil & \lceil \frac{2n-2}{5} \rceil & n-1 \\ \lambda(\overline{G}) & \lceil \frac{2n-2}{5} \rceil & \lceil \frac{2n-2}{5} \rceil & 1+\lceil \frac{2n-4}{5} \rceil & n \\ \lambda_g(G) & \lceil \frac{2n}{5} \rceil & \lceil \frac{2n}{5} \rceil & 1+\lceil \frac{2n-4}{5} \rceil & n \end{array}$$