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Detection devices and graphs

Detection devices and graphs

Graphs are used to model some problems:

detection devices located at some vertices
to detect/locate an intruder in some vertex,
...of course with a small number of detectors

e Detection: is there any intruder?

e Location: where is the intruder?
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Detection devices and graphs

Restrictions on detection devices

e Detect if there is an intruder in its neighborhood — 0, 1
e Detect it there is an intruder at distance < k — 0,1

e Detect if there is an intruder at distance = k — k
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Detection devices and graphs

Restrictions on detection devices

e At most one detection device at a vertex

e One or more detection devices at a vertex
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Detection devices and graphs

Restrictions on detection devices

At most one detection device at a vertex

One or more detection devices at a vertex

Detect an intruder located at any vertex of the graph

Detect an intruder in a subset of vertices
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Detection devices and graphs

Questions

e Bounds relating different parameters
e Bounds relating order, size, diameter, A, §,...

e Values on some families: complete graphs, paths, cycles,
wheels, bipartite graphs, trees,...

e Extremal values
e Realization type results

e Graph operations: Cartesian product, strong product,
complement,...

 Nordhaus-Gaddum type bounds: p(G) + p(G)
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Detection devices and graphs

Graphs

G = (V, E) graph,

G, complement of G

N(v) = {u : uv € E}, open neighborhood

N[v] = {v} U N(v), closed neighborhood

true-twin vertices: u, v € V such that N[u] = N|v]
false-twin vertices: u,v € V such that N(u) = N(v)
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Domination

e Dominating set of G, S C V:
forallve V\S, SNN(v)#0

e Domination number of G, ~(G):
minimum size of a dominating set of G

OFNREIFN

Dominating set v(G)=3
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location [Siater (1975), Harary and Melter (1976)]

e Locating set/Resolving set of G, S C V:
every vertex is uniquely determined by its vector of distances
to the vertices of S
e Location number/Metric dimension of G, B(G):
minimum size of a locating set of G
e Locating code/Metric basis of G:
locating and dominating set of minimum size

(1,3,1) w (2,2,1) (3,1,2)
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location and domination [Henning and Oellermann, 2004)

e Locating and dominating set (MLD-set) of G, S C V:
- dominating set of G
- locating set of G

e Location and domination number, n(G):
minimum size of a locating and dominating set of G

e Locating and dominating code of G:
locating and dominating set of minimum size

\max{+(G), B(G)} < n(G) < (G) + B(G)]
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location-domination [Slater, 1988]

e Locating-dominating set (LD-set) of G, S C V:
- dominating set of G
-Ng(uynS# Ng(v)NnS, ifuveV\S u#v

e Location-domination number, \(G):
minimum size of a locating-dominating set of G

e Locating-dominating code (LD-code) of G:
LD-set of minimum size
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location-Domination

» S LD-set = S dominating set
» S LD-set = Slocating set

> 7(G) < A(G)
> B(G) < ANG)

max{+(G), #(G)} < 1(G) < \(G)]
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location and Domination/Location-Domination

«.]) <Ol) %) (\%) (é) (05) Locating
u

(1,4 (0,3) (1,2) (2,1) (3,0) (4,1 Loca@ng_
Dominating

O——CO0—0O0—=8——oO
{u}p v Auy {o} v {o}
(1,0) (1,0) (0,1) (0,1) Not Loc.-Dom. (LD)

Loc.-Dominating (LD)

O @ @ O @ O
{fu} v w {v,w} v {v}
(1,0,0) (0,1,1) (0,1,0)
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Location and Domination/Location-Domination

S:{U*],...,Ur}
xeV\S — Ux)=(X1,...,X)
Param. X; Conditions
1, if x € N(uj); o
7 { 0, otherwise. i =1
B d(X7 U,‘) €(X)7é€(y), Ifx#y
n d(X7 U,‘) X =1 E(X);éﬁ(y), Ifx#y

1, if x € N(u)); o _
A { 0, otherwise. I =1 Ux)#LUy),itxF#y
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Identifying codes [Karpovsky, Chakrabarty and Levitin, 1998]

e [dentifying set of G, S C V:
- dominating set of G
- NglulNnS# Nglvln S, ifuveV,u#v

e Identifying number, .(G):
minimum size of an identifying set of G

e [dentifying code of G:
identifying set of minimum size

Identifying codes exist only in true-twin free graphs

[max{~(G), B(G)} < n(G) < NG) < «G)]
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Watching systems [Auger, Charon, Hudry and Lobstein, 2013]

e watcher. w; = (v;, A;), where w; = (v;, Aj), v; € V, A; C N[vj]
o labelofue V: L(u)={w;:ucAj}
e watching system: S = {w; : i € I} such that
Lu)y#0Oforallue V
Llu) £ L(v)ifu#v
e watching number, w(G):

minimum size of a watching system set of G

Watching systems exist in all graphs

|w(G) < +(G) [loga( +2)]|
(w(G) < (@) if Gis twin-free |
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Parameters Location, Domination and Location-domination

Identifying codes and watching systems

Watching number: example

G=Kig i(G)=86,w(G)=3
W= {W17 Wo, W3}, /(W,) =7
Awy) ={1,4,5,7}, A(wo) = {2,4,6,7}, A(ws) = {3,5,6,7}

wy, Wa, W3

a W1, W2, W3

o I e N

M. Mora Location and domination in graphs



Values
Bounds

Properties Extremal values
Realization Theorems

Some families

Pnwze  Cp 29 K (n>2) Kin-1 =  Krser<s
7(G) | T3] (3 1 1 2
B(G) 1 2 n—1 n-—2 n-—2
n(G) | [3] 3] n—1 n—1 n—2
NG) | 3] Ea n—1 n—1 n—2

Pnze  Cpwzn Kn (n>2) Ki n—1 (23 K s e<r<s)
uG) | [H7 3[2]-n — n—1 n-2
w(G) | "] (3] [log, (n+1)]  [log, (n+1)] (")

(*) [Hernando, Mora and Pelayo, 2012]
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Values
Bounds

Properties Extremal values
Realization Theorems

Bounds
G=(V,E), |V| = n, diam(G) = D > 3,

b 8 [D/3]
e 3+D<n< QSJ +1> + 8 Z (2i —1)5-1
[Hernando, Mora, Pelayo, Seara and Wood 2010]
o N+ % <n<nB8"7"+1),if G2 K
[Céaceres, Hernando, Mora, Pelayo and Puertas, 2013]

o)t 3D -1

<n<A+2* -1

[Caceres, Hernando, Mora, Pelayo and Puertas, 2013]

All bounds are tight!
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Values
Bounds

Properties Extremal values
Realization Theorems

Bounds

e 1 +1<n<2 —1,if Gis true-twin free
[Karpovsky, Chakrabarty and Levitin, 1998]

e Nn<2¥ —1
[Auger, Charon, Hudry and Lobstein, 2010]

e w(@G) < % if G is a connected graph of order 3 or > 5
[Auger, Charon, Hudry and Lobstein, 2010]
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Values
Bounds

Properties Extremal values
Realization Theorems

Small values of n(G) and A\(G)

e There are 51 non isomorphic graphs satisfying n(G) = 2
e There are 16 non isomorphic graphs satisfying A\(G) = 2
[Céaceres, Hernando, Mora, Pelayo and Puertas, 2013]

AN LD Y
KD
[
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Values
Bounds

Properties Extremal values
Realization Theorems

Large values of n(G) and \(G)

° T](G) =n—-1& G=K,, K17n_1
[Henning and Oellermann, 2004]
° )\(G) =n-1& G Kn,K1’n,1
[Slater, 1988]
e Graphs satisfying n(G) =n—2
[Henning and Oellermann, 2004]
e Graphs satisfying A\(G) = n— 2:
n(G)=n—-2 <= MNG)=n-2
[Caceres, Hernando, Mora, Pelayo and Puertas, 2013]
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Values
Bounds

Properties Extremal values

Realization Theorems

Realization Theorems

[Céaceres, Hernando, Mora, Pelayo and Puertas, 2013]

e Ggraph, max{y(G), 3(G)} < n(G) < +(G) + 8(G)]

ab,ceN, max{ab}<c<a+b =
3G graph satisfying v(G) = a, 5(G) = b,n(G) = c,
exceptift=b<a<c=a+1

e Ttree, [V(T)| 23, T2 Ps[n(T) < MT) < 24(T) - 2|

abeN, 3<a<b<2a-2 =
3T tree satisfyingn(T) =a, \(T) =b
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

)\(G) versus )\(G) [Hernando, Mora and Pelayo (2013)]
S LD-setof G = (V, E):
e dominating set of G

e Ng(uynS# Ng(v)nS, ifuveV\Su#v

> Ng(x)NS# Na(y) NS Ng(x)nS#Ng(y)nS

P )
=
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

A(G) versus A\(G)
S LD-set of G, then

» SLD-setof G < S dominating set of G.
» SLD-setof G Fuc V\ S, udominates Sin G.

» Jue V\ S, udominates Sin G
= SuU{u}isanLD-setof G

IMG) - AG)| < 1
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Global LD-sets

e global LD-set of G: LD-set of G and of G
i.e., Pue V\S, udominates Sin G.

» G contains a global LD-code = A\(G) < A\(G)

Graphs satisfying A\(G) = \(G) + 1?
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General results
Block-cactus

ies Bipartite graphs
A(G) versus A(G) Global Location-domination

Global LD-sets

G contains a non-global LD-set S =

» Juec V\ S, udominates S
» ecc(u) < 2,rad(G) < 2, diam(G) < 4

MG)=XNG)+1=>

= every LD-code of G is non-global
= G connected and diam(G) < 4
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General results
Block-cactus

ies Bipartite graphs
A(G) versus A(G) Global Location-domination

Block-cactus

e Block of G = (V, E): maximally connected subgraph with no
cut vertices

e Cactus: connected graph s.t. all blocks are cycles or K,
i.e., there is no edge lying on two different cycles

e Block-cactus: connected graph s.t. all blocks are cycles or
complete graphs
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General results
Block-cactus

ies Bipartite graphs
A(G) versus A(G) Global Location-domination

Families of block-cactus

block-cactus
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Block-cactus

Block-cactus s.t. A(G) = A\(G) + 1

G is one of the following graphs:
71 T 2 2
C : @ ST > 2
K., r>2 K., r>2 r>1

» T tree of order >3 = \(T) < \(T)
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General results
Block-cactus

ie Bipartite graphs
A(G) versus A(G) Global Location-domination

Bipartite graphs

Bipartite graphs s.t. \(G) = A\(G) + 1

G:(V,E) V= V1UV2,|V1‘:I’,|V2|:S,2§I’§S

> r=1,2= )G) < \G)
» S LD-code of G
e SNVi#Pand SNVa#0 = AG) < AG).

e S=Voandr < s= A\G) < A\G).
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Bipartite graphs satisfying \(G) = A\(G) + 1

G=(V.E),V=ViuVs |Vi| =1, |Vo| =5,3<r<s

Theorem 3
NG =AG)+1= 5 <s<2 1

Proof.
MG) = A\(G) +1 = V; LD-code of G

Vi LD-code = s < 2" — 1
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Proof of ¥ < s

— <
2_S

Vv e Vi, Vi \ {v} is not an LD-set:

Vi Nt Vs Vi
L

N(wy) & N(w,) = {v} Nw)® 0 = {v}

Location and domination in graphs



General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

3 .
Proof of 35 < s: the graph G*
G* edge-labeled graph associated to G:

e V(G*) = VoUu{wp}, wy ¢ Vo and define N(wp) =0
o Wy € E(G*) < N(wp) & N(wg) = {v} for some v € V;

° E(WhWk) = N(Wh) D N(Wk) e Vi
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General results
Block-cactus

ie Bipartite graphs
A(G) versus A(G) Global Location-domination

Example of graph G*
Vi ={1,2,3,4,5}
Vo ={[12345], [1234],[1245], [134], [234], [245],[13],[15], [34], [1], [3]}

[12345]
5 3
[1234] Eﬂ
1/ \2 1
[234] [134] [245]
21 L |a
[34] [13] _[15]
1
4 3 4
(3] (1]
1
TN\ !
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General results
Block-cactus

ie Bipartite graphs
A(G) versus A(G) Global Location-domination

Proof of & < s using the graph G*
V4 LD-code and 3 LD-code with vertices in both stable sets
= G* satisfies:
o |V(GY)|=s+1,|E(GY)| >2r
e (G* is bipartite
incident edges have different labels

walks contain an even number of edges with label v,

Vv € V,, iff they are closed

G* contains a subgraph H* of size 2r such that all its
connected components are cactus

e G with cc. cactus with no Cs, then |[E(G)| < %(]V( G)|-1).
3r

=8>+
-2
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General results
Block-cactus

ie Bipartite graphs
A(G) versus A(G) Global Location-domination

Bipartite graphs with A\(G) — \(G) € {—1,0,1}

Given integers r, s, 3 < r < s there are bipartite graphs G with
stable parts V;, V» satisfying |Vq| =r, | V2| = s and:
e A\(G) = A(G) — 1: double star Ko(r — 1,5 — 1)

e \(G) = A\(G): complete bipartite graphs K(r, s)

)\(é):)\(G)+1,if%+1 <s<2 —1:G(r,s)
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General results
Block-cactus

ie Bipartite graphs
A(G) versus A(G) Global Location-domination

Bipartite graphs with \(G) = A\(G) + 1

o (r,s),r,seN,3<rand¥ +1<s<2 -1,

3G(r, s) bipartite graph such that A\(G) > A(G).

Vi={1,2,...,r}fand s = antﬂz

[12...r]
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General results
Block-cactus

ies Bipartite graphs
A(G) versus A(G) Global Location-domination

Global domination [Brigham and Carrington, 1998]
e S C V, global dominating set of G:
a dominating set of G and of G

e global domination number, v¢(G):
minimum size of a global dominating set of G
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Global LD-number

e global LD-number of G:
minimum size of a global LD-set

v Ag(G) = Ag(G)

For any graph G = (V, E),

> AMG) < Ag(G) < XNG) +1

> Xg(G)
Ag(G)

> AG) # ANG) = \g(G) = max{\(G), \(G)}
MG) = MG) = M\g(G) € {\(G), \(G) + 1}

A(G) <= G has a global LD-code
A(G) + 1 < every LD-code of G is non-global
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General results
Block-cactus
Bipartite graphs

A(G) versus A\(G) Global Location-domination

Some values

Pn7n Cper Wh 8y  Kn (239
2n'| [2n—2'| n—1
2

5= | 1+[52'7T_41 n
Ag(G) | [3] (21 1+12%4 n

Kin—1om>4 Krseszs Ko(r,8) @sres)
A G) n—1 n—2 n—2
MG) n—1 n-2 n—-3
Ag(G) n—1 n-—2 n-2
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