Transversal extensions of transversal matroids

Anna de Mier

Universitat Politècnica de Catalunya

Joint work with:

Joseph Bonin, George Washington University

- Take a transversal matroid M on the ground set E
- Let N be a transversal matroid on $E \cup x$ such that $N \setminus x = M$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We would like to know about N

What is it about?

- Take a transversal matroid M on the ground set E
- Let N be a transversal matroid on $E \cup x$ such that $N \setminus x = M$

We would like to know about N

For instance:

- How do we obtain one/all such N?
- Are there many such N's?
- How do different N's relate to each other?

Let E be a finite set. Do the following:

▶ Take a collection A_1, \ldots, A_r with $A_i \subseteq E$, $1 \le i \le r$

・ロト・日本・モン・モン・モー うへの

Let E be a finite set. Do the following:

▶ Take a collection A_1, \ldots, A_r with $A_i \subseteq E$, $1 \le i \le r$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Take an *r*-simplex Δ with vertices v_1, \ldots, v_r

Let E be a finite set. Do the following:

- ▶ Take a collection A_1, \ldots, A_r with $A_i \subseteq E$, $1 \le i \le r$
- Take an *r*-simplex Δ with vertices v_1, \ldots, v_r
- For each e ∈ E, place e on the face spanned by {v_i : e ∈ A_i} as freely as possible

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let E be a finite set. Do the following:

- ▶ Take a collection A_1, \ldots, A_r with $A_i \subseteq E$, $1 \le i \le r$
- Take an *r*-simplex Δ with vertices v_1, \ldots, v_r
- For each e ∈ E, place e on the face spanned by {v_i : e ∈ A_i} as freely as possible

Claim: $\{e_1, \ldots, e_k\}$ is affinely independent if there are i_1, \ldots, i_k all different such that $e_j \in A_{i_i}$ for $1 \le j \le k$

Let E be a finite set. Do the following:

- ▶ Take a collection A_1, \ldots, A_r with $A_i \subseteq E$, $1 \le i \le r$
- Take an *r*-simplex Δ with vertices v_1, \ldots, v_r
- For each e ∈ E, place e on the face spanned by {v_i : e ∈ A_i} as freely as possible

Claim: $\{e_1, \ldots, e_k\}$ is affinely independent if there are i_1, \ldots, i_k all different such that $e_j \in A_{i_j}$ for $1 \le j \le k$

(it follows from Hall's theorem)

Transversal matroids

Let A_1, \ldots, A_r be subsets of a finite set E

A subset $\{e_1, \ldots, e_k\} \subseteq E$ is a partial transversal of A_1, \ldots, A_r if there are i_1, \ldots, i_k all different such that $e_i \in A_{i_i}$ for all $1 \leq j \leq k$

Thm (Edmonds and Fulkerson 1965)

The partial transversals of A_1, \ldots, A_r are the independent sets of a matroid on E

Matroids

Def A matroid consists of

- a finite non-empty set *E* (the ground set)
- a family \mathcal{I} of subsets of E (the independent sets)

such that

- ${\sf I.1} \ \emptyset \in \mathcal{I}$
- I.2 if $I' \subseteq I \in \mathcal{I}$ then $I' \in \mathcal{I}$
- 1.3 if $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$, then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Matroids

Def A matroid consists of

- a finite non-empty set E (the ground set)
- a family \mathcal{I} of subsets of E (the independent sets)

such that

- $\textbf{I.1} \hspace{0.1in} \emptyset \in \mathcal{I}$
- I.2 if $I' \subseteq I \in \mathcal{I}$ then $I' \in \mathcal{I}$
- 1.3 if $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$, then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$

Example:

E a finite set of points in affine space $\mathcal{I} = \{I \subseteq E : I \text{ is affinely independent } \}$

 Given X ⊆ E, all maximal independent sets contained in X have the same size, the rank r(X) of X

 Given X ⊆ E, all maximal independent sets contained in X have the same size, the rank r(X) of X

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A hyperplane is a maximal set of rank r(M) - 1

 Given X ⊆ E, all maximal independent sets contained in X have the same size, the rank r(X) of X

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A hyperplane is a maximal set of rank r(M) 1
- The complement of a hyperplane is called a cocircuit

- Given X ⊆ E, all maximal independent sets contained in X have the same size, the rank r(X) of X
- A hyperplane is a maximal set of rank r(M) 1
- The complement of a hyperplane is called a cocircuit
- If $x \in X$ is such that r(X x) = r(X) 1, we say that x is a coloop of X (so x is in all maximal independent sets of X)

- Given X ⊆ E, all maximal independent sets contained in X have the same size, the rank r(X) of X
- A hyperplane is a maximal set of rank r(M) 1
- The complement of a hyperplane is called a cocircuit
- If $x \in X$ is such that r(X x) = r(X) 1, we say that x is a coloop of X (so x is in all maximal independent sets of X)

Given M and an element e ∈ E, the deletion M\e is the matroid on E − e with independent sets {I ∈ I : e ∉ I}

A transversal matroid

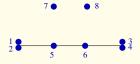
 $\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$ gives



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A transversal matroid

 $\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$ gives

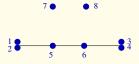


Observe that $(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\}$ also gives the same matroid

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♥ ♥ ♥

A transversal matroid

 $\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$ gives



Observe that $(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\}$ also gives the same matroid

The collections $(\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$ and $(\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ are presentations of the transversal matroid

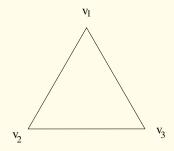
Representing transversal matroids on a simplex

Thm (Brylawski 1975) "Transversal matroids are those that admit a representation in a simplex Δ where elements lie on the faces of Δ is the most free possible way"

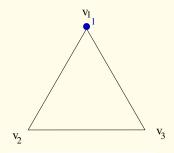
Given such a representation, we can recover the presentation as

 $A_i = \{x : x \text{ is not on the face opposite to vertex } v_i\}$

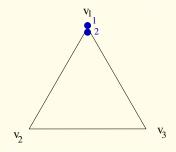
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



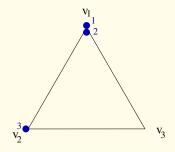
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



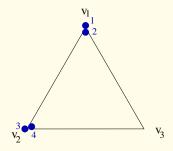
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



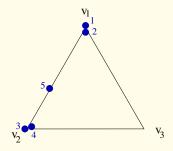
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



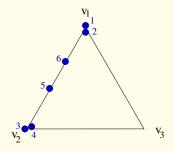
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



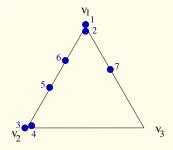
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



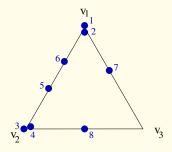
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



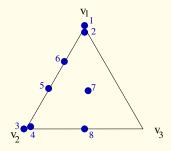
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$



$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 8\}, \{7, 8\})$$

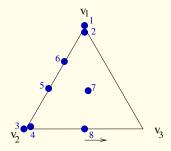


 $\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 7, 8\}, \{7, 8\})$



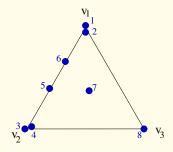
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

 $\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 7, 8\}, \{7, 8\})$

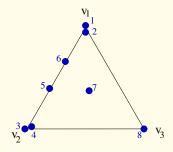


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

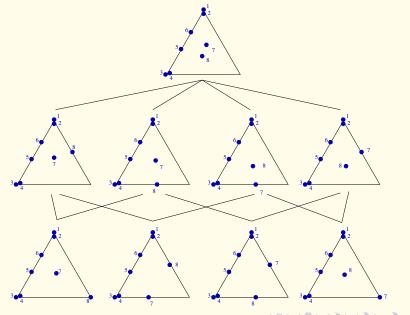
$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$$



$$\mathcal{A} = (\{1, 2, 5, 6, 7\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$$



The poset of all presentations



SAC

Some facts about presentations

The set of presentations of a transversal matroid is ordered by set inclusion

- A transversal matroid can typically have many minimal presentations
- The sets in a minimal presentation are cocircuits (Las Vergnas 70, Bondy and Welsh 71)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some facts about presentations

The set of presentations of a transversal matroid is ordered by set inclusion

- A transversal matroid can typically have many minimal presentations
- The sets in a minimal presentation are cocircuits (Las Vergnas 70, Bondy and Welsh 71)
- A transversal matroid has a unique maximal presentation (Mason 69, Bondy 72)
- If (A₁, A₂,..., A_r) and (B₁, A₂,..., A_r) are presentations with A₁ ⊂ B₁, the elements of B₁\A₁ are coloops of M\A₁ (Bondy and Welsh 71)

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M = N \setminus x$ (and, for us, r(N) = r(M))

 The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M = N \setminus x$ (and, for us, r(N) = r(M))

The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M = N \setminus x$ (and, for us, r(N) = r(M))

 The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

▶ If $(B_1, ..., B_r)$ is a presentation of N, then $(B_1 \setminus x, ..., B_r \setminus x)$ is a presentation of $M = N \setminus x$

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M = N \setminus x$ (and, for us, r(N) = r(M))

 The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

- ▶ If $(B_1, ..., B_r)$ is a presentation of N, then $(B_1 \setminus x, ..., B_r \setminus x)$ is a presentation of $M = N \setminus x$
- So all transversal extensions of M can be obtained by adding x to some sets in some presentation of M.

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M = N \setminus x$ (and, for us, r(N) = r(M))

The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

- If (B_1, \ldots, B_r) is a presentation of N, then $(B_1 \setminus x, \ldots, B_r \setminus x)$ is a presentation of $M = N \setminus x$
- So all transversal extensions of M can be obtained by adding x to some sets in some presentation of M.
- But could it be that we get repetitions? How can we ensure we have all extensions?

Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \left\{ egin{array}{ll} A_{i} \cup x, & ext{if } i \in I, \ A_{i}, & ext{otherwise}. \end{array}
ight.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

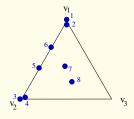
The matroid $M[\mathcal{A}^{I}]$ is a transversal extension of M

Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \begin{cases} A_{i} \cup x, & \text{if } i \in I, \\ A_{i}, & \text{otherwise.} \end{cases}$$

The matroid $M[\mathcal{A}']$ is a transversal extension of M

Example: $\mathcal{A} = (\{1, 2, 5, 6, 7, 8\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ $I = \{1, 2, 3\}$

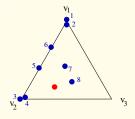


Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \begin{cases} A_{i} \cup x, & \text{if } i \in I, \\ A_{i}, & \text{otherwise.} \end{cases}$$

The matroid $M[\mathcal{A}']$ is a transversal extension of M

Example: $\mathcal{A} = (\{1, 2, 5, 6, 7, 8\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ $I = \{1, 2, 3\}$

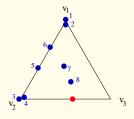


Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \begin{cases} A_{i} \cup x, & \text{if } i \in I, \\ A_{i}, & \text{otherwise.} \end{cases}$$

The matroid $M[\mathcal{A}']$ is a transversal extension of M

Example: $\mathcal{A} = (\{1, 2, 5, 6, 7, 8\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ $I = \{2, 3\}$

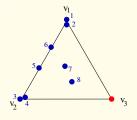


Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \begin{cases} A_{i} \cup x, & \text{if } i \in I, \\ A_{i}, & \text{otherwise.} \end{cases}$$

The matroid $M[\mathcal{A}']$ is a transversal extension of M

Example: $\mathcal{A} = (\{1, 2, 5, 6, 7, 8\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ $I = \{3\}$

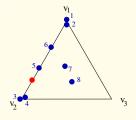


Let $\mathcal{A} = (A_1, \dots, A_r)$ be a presentation of MFor $I \subseteq [r]$, let

$$\mathcal{A}^{I} = \begin{cases} A_{i} \cup x, & \text{if } i \in I, \\ A_{i}, & \text{otherwise.} \end{cases}$$

The matroid $M[\mathcal{A}']$ is a transversal extension of M

Example: $\mathcal{A} = (\{1, 2, 5, 6, 7, 8\}, \{3, 4, 5, 6, 7\}, \{7, 8\})$ $I = \{1, 2\}$



Only minimal presentations give different extensions

<u>Thm 1</u>

The following are equivalent:

- (i) if $I \neq J$ then $M[\mathcal{A}^I] \neq M[\mathcal{A}^J]$
- (ii) the presentation ${\cal A}$ is minimal

<u>Cor</u> If \mathcal{A} is a minimal presentation of M, then \mathcal{A}' is a minimal presentation of $M[\mathcal{A}']$

Minimal presentations give all possible extensions

<u>Thm 2</u>

If N is a transversal extension of M, there exist a minimal presentation \mathcal{A} of M and a set $I \subseteq [r]$ such that $N = M[\mathcal{A}^{I}]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal presentations give all possible extensions

<u>Thm 2</u>

If N is a transversal extension of M, there exist a minimal presentation \mathcal{A} of M and a set $I \subseteq [r]$ such that $N = M[\mathcal{A}^{I}]$

Unfortunately we do not know how to get all minimal presentations of all extensions...

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^I] \neq M[\mathcal{A}^J]$

(ii) the presentation ${\cal A}$ is minimal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of (ii) \Rightarrow (i)

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^I] \neq M[\mathcal{A}^J]$

(ii) the presentation ${\cal A}$ is minimal

Proof of (ii) \Rightarrow (i)

As A is minimal, the A_i are cocircuits, so $H_i = E - A_i$ are hyperplanes of M[A]:

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^I] \neq M[\mathcal{A}^J]$

(ii) the presentation ${\cal A}$ is minimal

Proof of (ii) \Rightarrow (i)

As A is minimal, the A_i are cocircuits, so $H_i = E - A_i$ are hyperplanes of M[A]:

- If $i \in I$, then H_i is a hyperplane of $M[\mathcal{A}^I]$

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^{I}] \neq M[\mathcal{A}^{J}]$

(ii) the presentation ${\cal A}$ is minimal

Proof of (ii) \Rightarrow (i)

As A is minimal, the A_i are cocircuits, so $H_i = E - A_i$ are hyperplanes of M[A]:

- If $i \in I$, then H_i is a hyperplane of $M[\mathcal{A}^I]$
- If $i \notin I$, then $H_i \cup x$ is a hyperplane of $M[\mathcal{A}^I]$

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^{I}] \neq M[\mathcal{A}^{J}]$

(ii) the presentation ${\cal A}$ is minimal

Proof of (ii) \Rightarrow (i)

As A is minimal, the A_i are cocircuits, so $H_i = E - A_i$ are hyperplanes of M[A]:

- If $i \in I$, then H_i is a hyperplane of $M[\mathcal{A}^I]$
- If $i \notin I$, then $H_i \cup x$ is a hyperplane of $M[\mathcal{A}^I]$

So looking which H_i are hyperplanes in $M[\mathcal{A}^I]$ we can recover I

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^{I}] \neq M[\mathcal{A}^{J}]$

(ii) the presentation ${\cal A}$ is minimal

Idea of proof of (i) \Rightarrow (ii)

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^{I}] \neq M[\mathcal{A}^{J}]$

(ii) the presentation \mathcal{A} is minimal

Idea of proof of (i) \Rightarrow (ii)

Assume A is not minimal. Say A_r is not a cocircuit

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^{I}] \neq M[\mathcal{A}^{J}]$

(ii) the presentation ${\cal A}$ is minimal

Idea of proof of (i) \Rightarrow (ii)

Assume A is not minimal. Say A_r is not a cocircuit We claim that $M[A^{[r-1]}] = M[A^{[r]}]$

Thm 1 The following are equivalent:

(i) if $I \neq J$ then $M[\mathcal{A}^I] \neq M[\mathcal{A}^J]$

(ii) the presentation ${\cal A}$ is minimal

Idea of proof of (i) \Rightarrow (ii)

Assume A is not minimal. Say A_r is not a cocircuit We claim that $M[A^{[r-1]}] = M[A^{[r]}]$

It is essentially a consequence of the lemma of Bondy and Welsh

The weak order

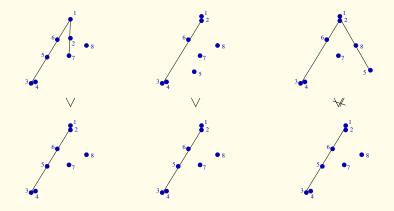
Let M_1, M_2 be two matroids on E. The weak order:

 $M_1 \leq_w M_2$ if every independent set in M_1 is independent in M_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The weak order

Let M_1, M_2 be two matroids on E. The weak order: $M_1 \leq_w M_2$ if every independent set in M_1 is independent in M_2



A D > A P > A D > A D >

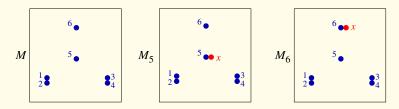
э

Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under the weak order

Extensions and the weak order

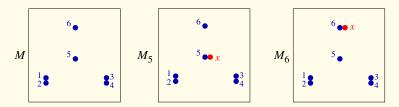
Fact: the set of all extensions of a matroid M is a lattice under the weak order



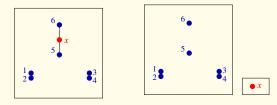
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under the weak order



Join $M_5 \vee M_6$ and meet $M_5 \wedge M_6$:



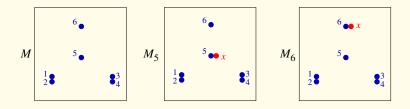
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A question

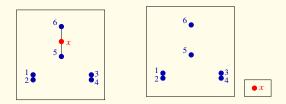
Is the set of all transversal extensions of a transversal matroid also a lattice under the weak order?

► Thus, given N₁ and N₂ two transversal extensions of M, is there a smallest transversal extension N₃ such that N₁ ≤_w N₃ and N₂ ≤_w N₃?

Example



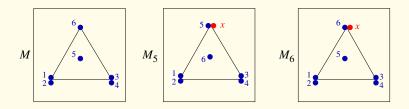
Join $M_5 \vee M_6$ and meet $M_5 \wedge M_6$:



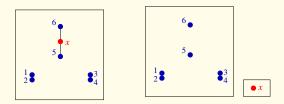
(日) (四) (三) (三)

æ

Example



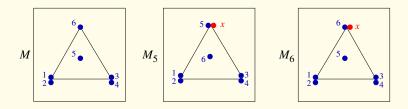
Join $M_5 \vee M_6$ and meet $M_5 \wedge M_6$:



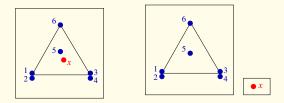
< //>
</ >
</ >
</ >

 M_5 and M_6 are transversal extensions of MBut the ordinary join $M_5 \vee M_6$ is not transversal

Example



Transversal join $M_5 \vee M_6$ and meet $M_5 \wedge M_6$:



< 🗇 🕨 🔸

 M_5 and M_6 are transversal extensions of MBut the ordinary join $M_5 \vee M_6$ is not transversal

One (predictable?) result

<u>Thm</u>

For a transversal matroid M[A], the set of extensions obtained by adding a new element x to some of the sets in A is a lattice under the weak order.

The transversal join of $M[\mathcal{A}^{I}]$ and $M[\mathcal{A}^{J}]$ is $M[\mathcal{A}^{I\cup J}]$

Yet their transversal meet need not be $M[\mathcal{A}^{I\cap J}]$ if \mathcal{A} is not minimal

 We know how to get all transversal extensions of a transversal matroid

・ロト・日本・モン・モン・モー うへの

We know some ways in which repetitions can arise

 We know how to get all transversal extensions of a transversal matroid
 We know some ways in which repetitions can arise

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

We would like to get each extension only once!

- We know how to get all transversal extensions of a transversal matroid We know some ways in which repetitions can arise We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We know how to get all transversal extensions of a transversal matroid We know some ways in which repetitions can arise We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

・ロト・日本・モート モー シック

We would like to understand it better!

- We know how to get all transversal extensions of a transversal matroid We know some ways in which repetitions can arise We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

・ロト・日本・モート モー シック

We would like to understand it better!

We would like to use our results!