Transversal extensions of transversal matroids

Anna de Mier
Universitat Politècnica de Catalunya

Joint work with:
Joseph Bonin, George Washington University

What is it about?

- Take a transversal matroid M on the ground set E
- Let N be a transversal matroid on $E \cup x$ such that $N \backslash x=M$
- We would like to know about N

What is it about?

- Take a transversal matroid M on the ground set E
- Let N be a transversal matroid on $E \cup x$ such that $N \backslash x=M$
- We would like to know about N

For instance:

- How do we obtain one/all such N ?
- Are there many such N 's?
- How do different N 's relate to each other?

Warm up

Let E be a finite set. Do the following:

- Take a collection A_{1}, \ldots, A_{r} with $A_{i} \subseteq E, 1 \leq i \leq r$

Warm up

Let E be a finite set. Do the following:

- Take a collection A_{1}, \ldots, A_{r} with $A_{i} \subseteq E, 1 \leq i \leq r$
- Take an r-simplex Δ with vertices v_{1}, \ldots, v_{r}

Warm up

Let E be a finite set. Do the following:

- Take a collection A_{1}, \ldots, A_{r} with $A_{i} \subseteq E, 1 \leq i \leq r$
- Take an r-simplex Δ with vertices v_{1}, \ldots, v_{r}
- For each $e \in E$, place e on the face spanned by $\left\{v_{i}: e \in A_{i}\right\}$ as freely as possible

Warm up

Let E be a finite set. Do the following:

- Take a collection A_{1}, \ldots, A_{r} with $A_{i} \subseteq E, 1 \leq i \leq r$
- Take an r-simplex Δ with vertices v_{1}, \ldots, v_{r}
- For each $e \in E$, place e on the face spanned by $\left\{v_{i}: e \in A_{i}\right\}$ as freely as possible

Claim: $\left\{e_{1}, \ldots, e_{k}\right\}$ is affinely independent if there are i_{1}, \ldots, i_{k} all different such that $e_{j} \in A_{i_{j}}$ for $1 \leq j \leq k$

Warm up

Let E be a finite set. Do the following:

- Take a collection A_{1}, \ldots, A_{r} with $A_{i} \subseteq E, 1 \leq i \leq r$
- Take an r-simplex Δ with vertices v_{1}, \ldots, v_{r}
- For each $e \in E$, place e on the face spanned by $\left\{v_{i}: e \in A_{i}\right\}$ as freely as possible

Claim: $\left\{e_{1}, \ldots, e_{k}\right\}$ is affinely independent if there are i_{1}, \ldots, i_{k} all different such that $e_{j} \in A_{i_{j}}$ for $1 \leq j \leq k$
(it follows from Hall's theorem)

Transversal matroids

Let A_{1}, \ldots, A_{r} be subsets of a finite set E
A subset $\left\{e_{1}, \ldots, e_{k}\right\} \subseteq E$ is a partial transversal of A_{1}, \ldots, A_{r} if there are i_{1}, \ldots, i_{k} all different such that $e_{j} \in A_{i j}$ for all $1 \leq j \leq k$

Thm (Edmonds and Fulkerson 1965)
The partial transversals of A_{1}, \ldots, A_{r} are the independent sets of a matroid on E

Matroids

Def A matroid consists of

- a finite non-empty set E (the ground set)
- a family \mathcal{I} of subsets of E (the independent sets)
such that
I. $1 \emptyset \in \mathcal{I}$
I. 2 if $I^{\prime} \subseteq I \in \mathcal{I}$ then $I^{\prime} \in \mathcal{I}$
I. 3 if $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$, then there exists $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$

Matroids

Def A matroid consists of

- a finite non-empty set E (the ground set)
- a family \mathcal{I} of subsets of E (the independent sets)
such that
I. $1 \emptyset \in \mathcal{I}$
I. 2 if $I^{\prime} \subseteq I \in \mathcal{I}$ then $I^{\prime} \in \mathcal{I}$
I. 3 if $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$, then there exists $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$

Example:
E a finite set of points in affine space
$\mathcal{I}=\{I \subseteq E: I$ is affinely independent $\}$

Some matroid facts

- Given $X \subseteq E$, all maximal independent sets contained in X have the same size, the rank $r(X)$ of X

Some matroid facts

- Given $X \subseteq E$, all maximal independent sets contained in X have the same size, the rank $r(X)$ of X
- A hyperplane is a maximal set of rank $r(M)-1$

Some matroid facts

- Given $X \subseteq E$, all maximal independent sets contained in X have the same size, the rank $r(X)$ of X
- A hyperplane is a maximal set of rank $r(M)-1$
- The complement of a hyperplane is called a cocircuit

Some matroid facts

- Given $X \subseteq E$, all maximal independent sets contained in X have the same size, the rank $r(X)$ of X
- A hyperplane is a maximal set of rank $r(M)-1$
- The complement of a hyperplane is called a cocircuit
- If $x \in X$ is such that $r(X-x)=r(X)-1$, we say that x is a coloop of X (so x is in all maximal independent sets of X)

Some matroid facts

- Given $X \subseteq E$, all maximal independent sets contained in X have the same size, the rank $r(X)$ of X
- A hyperplane is a maximal set of rank $r(M)-1$
- The complement of a hyperplane is called a cocircuit
- If $x \in X$ is such that $r(X-x)=r(X)-1$, we say that x is a coloop of X (so x is in all maximal independent sets of X)
- Given M and an element $e \in E$, the deletion $M \backslash e$ is the matroid on $E-e$ with independent sets $\{I \in \mathcal{I}: e \notin I\}$

A transversal matroid

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,8\},\{7,8\}) \text { gives }
$$

A transversal matroid

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,8\},\{7,8\}) \text { gives }
$$

Observe that $(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\}$ also gives the same matroid

A transversal matroid

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,8\},\{7,8\}) \text { gives }
$$

Observe that $(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\}$ also gives the same matroid

The collections ($\{1,2,5,6,7\},\{3,4,5,6,8\},\{7,8\}$) and $(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\})$ are presentations of the transversal matroid

Representing transversal matroids on a simplex

Thm (Brylawski 1975) "Transversal matroids are those that admit a representation in a simplex Δ where elements lie on the faces of Δ is the most free possible way"

Given such a representation, we can recover the presentation as
$A_{i}=\left\{x: x\right.$ is not on the face opposite to vertex $\left.v_{i}\right\}$

Example again

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,8\},\{7,8\})
$$

Example again

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,7,8\},\{7,8\})
$$

Example again

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,7,8\},\{7,8\})
$$

Example again

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\})
$$

Example again

$$
\mathcal{A}=(\{1,2,5,6,7\},\{3,4,5,6,7\},\{7,8\})
$$

The poset of all presentations

Some facts about presentations

The set of presentations of a transversal matroid is ordered by set inclusion

- A transversal matroid can typically have many minimal presentations
- The sets in a minimal presentation are cocircuits (Las Vergnas 70, Bondy and Welsh 71)

Some facts about presentations

The set of presentations of a transversal matroid is ordered by set inclusion

- A transversal matroid can typically have many minimal presentations
- The sets in a minimal presentation are cocircuits (Las Vergnas 70, Bondy and Welsh 71)
- A transversal matroid has a unique maximal presentation (Mason 69, Bondy 72)
- If $\left(A_{1}, A_{2}, \ldots, A_{r}\right)$ and $\left(B_{1}, A_{2}, \ldots, A_{r}\right)$ are presentations with $A_{1} \subset B_{1}$, the elements of $B_{1} \backslash A_{1}$ are coloops of $M \backslash A_{1}$ (Bondy and Welsh 71)

Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M=N \backslash x$ (and, for us, $r(N)=r(M)$)

- The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M=N \backslash x$ (and, for us, $r(N)=r(M)$)

- The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M=N \backslash x$ (and, for us, $r(N)=r(M)$)

- The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

- If $\left(B_{1}, \ldots, B_{r}\right)$ is a presentation of N, then $\left(B_{1} \backslash x, \ldots, B_{r} \backslash x\right)$ is a presentation of $M=N \backslash x$

Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M=N \backslash x$ (and, for us, $r(N)=r(M)$)

- The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

- If $\left(B_{1}, \ldots, B_{r}\right)$ is a presentation of N, then $\left(B_{1} \backslash x, \ldots, B_{r} \backslash x\right)$ is a presentation of $M=N \backslash x$
- So all transversal extensions of M can be obtained by adding x to some sets in some presentation of M.

Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N on $E \cup x$ such that $M=N \backslash x$ (and, for us, $r(N)=r(M)$)

- The theory of extensions is well-understood: extensions of M are in bijection with some families of subsets called "modular cuts of flats" (Crapo 65)

A transversal extension of a transversal matroid M is an extension of M that is also transversal

- If $\left(B_{1}, \ldots, B_{r}\right)$ is a presentation of N, then $\left(B_{1} \backslash x, \ldots, B_{r} \backslash x\right)$ is a presentation of $M=N \backslash x$
- So all transversal extensions of M can be obtained by adding x to some sets in some presentation of M.
- But could it be that we get repetitions? How can we ensure we have all extensions?

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise } .\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise }\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M
Example: $\mathcal{A}=(\{1,2,5,6,7,8\},\{3,4,5,6,7\},\{7,8\})$
$I=\{1,2,3\}$

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise }\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M
Example: $\mathcal{A}=(\{1,2,5,6,7,8\},\{3,4,5,6,7\},\{7,8\})$
$I=\{1,2,3\}$

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise }\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M
Example: $\mathcal{A}=(\{1,2,5,6,7,8\},\{3,4,5,6,7\},\{7,8\})$
$I=\{2,3\}$

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise }\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M
Example: $\mathcal{A}=(\{1,2,5,6,7,8\},\{3,4,5,6,7\},\{7,8\})$
$I=\{3\}$

Notation

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{r}\right)$ be a presentation of M
For $I \subseteq[r]$, let

$$
\mathcal{A}^{\prime}= \begin{cases}A_{i} \cup x, & \text { if } i \in I, \\ A_{i}, & \text { otherwise }\end{cases}
$$

The matroid $M\left[\mathcal{A}^{\prime}\right]$ is a transversal extension of M
Example: $\mathcal{A}=(\{1,2,5,6,7,8\},\{3,4,5,6,7\},\{7,8\})$
$I=\{1,2\}$

Only minimal presentations give different extensions

Thm 1
The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Cor If \mathcal{A} is a minimal presentation of M, then \mathcal{A}^{\prime} is a minimal presentation of $M\left[\mathcal{A}^{\prime}\right]$

Minimal presentations give all possible extensions

Thm 2
If N is a transversal extension of M, there exist a minimal presentation \mathcal{A} of M and a set $I \subseteq[r]$ such that $N=M\left[\mathcal{A}^{\prime}\right]$

Minimal presentations give all possible extensions

Thm 2
If N is a transversal extension of M, there exist a minimal presentation \mathcal{A} of M and a set $I \subseteq[r]$ such that $N=M\left[\mathcal{A}^{\prime}\right]$

Unfortunately we do not know how to get all minimal presentations of all extensions...

Proof of Thm 1 (I)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Proof of (ii) \Rightarrow (i)

Proof of Thm 1 (I)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Proof of (ii) \Rightarrow (i)
As \mathcal{A} is minimal, the A_{i} are cocircuits, so $H_{i}=E-A_{i}$ are hyperplanes of $M[\mathcal{A}]:$

Proof of Thm 1 (I)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Proof of (ii) \Rightarrow (i)
As \mathcal{A} is minimal, the A_{i} are cocircuits, so $H_{i}=E-A_{i}$ are hyperplanes of $M[\mathcal{A}]$:

- If $i \in I$, then H_{i} is a hyperplane of $M\left[\mathcal{A}^{\prime}\right]$

Proof of Thm 1 (I)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Proof of (ii) \Rightarrow (i)
As \mathcal{A} is minimal, the A_{i} are cocircuits, so $H_{i}=E-A_{i}$ are hyperplanes of $M[\mathcal{A}]$:

- If $i \in I$, then H_{i} is a hyperplane of $M\left[\mathcal{A}^{\prime}\right]$
- If $i \notin I$, then $H_{i} \cup x$ is a hyperplane of $M\left[\mathcal{A}^{\prime}\right]$

Proof of Thm 1 (I)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Proof of (ii) \Rightarrow (i)
As \mathcal{A} is minimal, the A_{i} are cocircuits, so $H_{i}=E-A_{i}$ are hyperplanes of $M[\mathcal{A}]$:

- If $i \in I$, then H_{i} is a hyperplane of $M\left[\mathcal{A}^{\prime}\right]$
- If $i \notin I$, then $H_{i} \cup x$ is a hyperplane of $M\left[\mathcal{A}^{\prime}\right]$

So looking which H_{i} are hyperplanes in $M\left[\mathcal{A}^{\prime}\right]$ we can recover I

Proof of Thm 1 (II)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Idea of proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$

Proof of Thm 1 (II)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Idea of proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$
Assume \mathcal{A} is not minimal. Say A_{r} is not a cocircuit

Proof of Thm 1 (II)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Idea of proof of $(\mathrm{i}) \Rightarrow$ (ii)
Assume \mathcal{A} is not minimal. Say A_{r} is not a cocircuit
We claim that $M\left[\mathcal{A}^{[r-1]}\right]=M\left[\mathcal{A}^{[r]}\right]$

Proof of Thm 1 (II)

Thm 1 The following are equivalent:
(i) if $I \neq J$ then $M\left[\mathcal{A}^{\prime}\right] \neq M\left[\mathcal{A}^{J}\right]$
(ii) the presentation \mathcal{A} is minimal

Idea of proof of (i) \Rightarrow (ii)
Assume \mathcal{A} is not minimal. Say A_{r} is not a cocircuit
We claim that $M\left[\mathcal{A}^{[r-1]}\right]=M\left[\mathcal{A}^{[r]}\right]$
It is essentially a consequence of the lemma of Bondy and Welsh

The weak order

Let M_{1}, M_{2} be two matroids on E. The weak order:
$M_{1} \leq_{w} M_{2}$ if every independent set in M_{1} is independent in M_{2}

The weak order

Let M_{1}, M_{2} be two matroids on E. The weak order:
$M_{1} \leq_{w} M_{2}$ if every independent set in M_{1} is independent in M_{2}

Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under the weak order

Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under the weak order

Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under the weak order

Join $M_{5} \vee M_{6}$ and meet $M_{5} \wedge M_{6}$:

A question

Is the set of all transversal extensions of a transversal matroid also a lattice under the weak order?

- Thus, given N_{1} and N_{2} two transversal extensions of M, is there a smallest transversal extension N_{3} such that $N_{1} \leq{ }_{w} N_{3}$ and $N_{2} \leq{ }_{w} N_{3}$?

Example

Join $M_{5} \vee M_{6}$ and meet $M_{5} \wedge M_{6}$:

Example

Join $M_{5} \vee M_{6}$ and meet $M_{5} \wedge M_{6}$:

M_{5} and M_{6} are transversal extensions of M
But the ordinary join $M_{5} \vee M_{6}$ is not transversal

Example

Transversal join $M_{5} \vee M_{6}$ and meet $M_{5} \wedge M_{6}$:

M_{5} and M_{6} are transversal extensions of M
But the ordinary join $M_{5} \vee M_{6}$ is not transversal

One (predictable?) result

Thm

For a transversal matroid $M[\mathcal{A}]$, the set of extensions obtained by adding a new element x to some of the sets in \mathcal{A} is a lattice under the weak order.

The transversal join of $M\left[\mathcal{A}^{\prime}\right]$ and $M\left[\mathcal{A}^{J}\right]$ is $M\left[\mathcal{A}^{I \cup J}\right]$
Yet their transversal meet need not be $M\left[\mathcal{A}^{I \cap J}\right]$ if \mathcal{A} is not minimal

Wrapping up

- We know how to get all transversal extensions of a transversal matroid
We know some ways in which repetitions can arise

Wrapping up

- We know how to get all transversal extensions of a transversal matroid
We know some ways in which repetitions can arise
We would like to get each extension only once!

Wrapping up

- We know how to get all transversal extensions of a transversal matroid
We know some ways in which repetitions can arise
We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

Wrapping up

- We know how to get all transversal extensions of a transversal matroid
We know some ways in which repetitions can arise
We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

We would like to understand it better!

Wrapping up

- We know how to get all transversal extensions of a transversal matroid
We know some ways in which repetitions can arise
We would like to get each extension only once!
- We understand a little the structure of the set of transversal extensions

We would like to understand it better!

- We would like to use our results!

