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What is it about?

I Take a transversal matroid M on the ground set E

I Let N be a transversal matroid on E ∪ x such that N\x = M

I We would like to know about N

For instance:
I How do we obtain one/all such N?
I Are there many such N’s?
I How do different N’s relate to each other?
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Warm up

Let E be a finite set. Do the following:

I Take a collection A1, . . . ,Ar with Ai ⊆ E , 1 ≤ i ≤ r

I Take an r -simplex ∆ with vertices v1, . . . , vr
I For each e ∈ E , place e on the face spanned by {vi : e ∈ Ai}

as freely as possible

Claim: {e1, . . . , ek} is affinely independent if there are i1, . . . , ik all
different such that ej ∈ Aij for 1 ≤ j ≤ k

(it follows from Hall’s theorem)
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Transversal matroids

Let A1, . . . ,Ar be subsets of a finite set E

A subset {e1, . . . , ek} ⊆ E is a partial transversal of A1, . . . ,Ar if
there are i1, . . . , ik all different such that ej ∈ Aij for all 1 ≤ j ≤ k

Thm (Edmonds and Fulkerson 1965)
The partial transversals of A1, . . . ,Ar are the independent sets of a
matroid on E



Matroids

Def A matroid consists of

- a finite non-empty set E (the ground set)

- a family I of subsets of E (the independent sets)

such that

I.1 ∅ ∈ I
I.2 if I ′ ⊆ I ∈ I then I ′ ∈ I
I.3 if I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2\I1 such

that I1 ∪ e ∈ I

Example:
E a finite set of points in affine space
I = {I ⊆ E : I is affinely independent }
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Some matroid facts

- Given X ⊆ E , all maximal independent sets contained in X
have the same size, the rank r(X ) of X

- A hyperplane is a maximal set of rank r(M)− 1

- The complement of a hyperplane is called a cocircuit

- If x ∈ X is such that r(X − x) = r(X )− 1, we say that x is a
coloop of X (so x is in all maximal independent sets of X )

- Given M and an element e ∈ E , the deletion M\e is the
matroid on E − e with independent sets {I ∈ I : e 6∈ I}
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A transversal matroid

A = ({1, 2, 5, 6, 7}, {3, 4, 5, 6, 8}, {7, 8}) gives

1 3
4

5 6

7 8

2

Observe that ({1, 2, 5, 6, 7}, {3, 4, 5, 6, 7}, {7, 8} also gives the
same matroid

The collections ({1, 2, 5, 6, 7}, {3, 4, 5, 6, 8}, {7, 8}) and
({1, 2, 5, 6, 7}, {3, 4, 5, 6, 7}, {7, 8}) are presentations of the
transversal matroid
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Representing transversal matroids on a simplex

Thm (Brylawski 1975) “Transversal matroids are those that
admit a representation in a simplex ∆ where elements lie on the
faces of ∆ is the most free possible way”

Given such a representation, we can recover the presentation as

Ai = {x : x is not on the face opposite to vertex vi}



Example again
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The poset of all presentations
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Some facts about presentations

The set of presentations of a transversal matroid is ordered by set
inclusion

I A transversal matroid can typically have many minimal
presentations

I The sets in a minimal presentation are cocircuits (Las Vergnas

70, Bondy and Welsh 71)

I A transversal matroid has a unique maximal presentation
(Mason 69, Bondy 72)

I If (A1,A2, . . . ,Ar ) and (B1,A2, . . . ,Ar ) are presentations with
A1 ⊂ B1, the elements of B1\A1 are coloops of M\A1 (Bondy

and Welsh 71)
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Transversal extensions

A (single-element) extension of a matroid M on E is a matroid N
on E ∪ x such that M = N\x (and, for us, r(N) = r(M))

I The theory of extensions is well-understood: extensions of M
are in bijection with some families of subsets called “modular
cuts of flats” (Crapo 65)

A transversal extension of a transversal matroid M is an extension
of M that is also transversal

I If (B1, . . . ,Br ) is a presentation of N, then (B1\x , . . . ,Br\x)
is a presentation of M = N\x

I So all transversal extensions of M can be obtained by adding
x to some sets in some presentation of M.

I But could it be that we get repetitions? How can we ensure
we have all extensions?
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Notation

Let A = (A1, . . . ,Ar ) be a presentation of M
For I ⊆ [r ], let

AI =

{
Ai ∪ x , if i ∈ I ,
Ai , otherwise.

The matroid M[AI ] is a transversal extension of M

Example: A = ({1, 2, 5, 6, 7, 8}, {3, 4, 5, 6, 7}, {7, 8})
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Only minimal presentations give different extensions

Thm 1
The following are equivalent:

(i) if I 6= J then M[AI ] 6= M[AJ ]

(ii) the presentation A is minimal

Cor If A is a minimal presentation of M, then AI is a minimal
presentation of M[AI ]



Minimal presentations give all possible extensions

Thm 2
If N is a transversal extension of M, there exist a minimal
presentation A of M and a set I ⊆ [r ] such that N = M[AI ]

Unfortunately we do not know how to get all minimal
presentations of all extensions. . .
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Proof of Thm 1 (I)

Thm 1 The following are equivalent:

(i) if I 6= J then M[AI ] 6= M[AJ ]

(ii) the presentation A is minimal

Proof of (ii) ⇒ (i)

As A is minimal, the Ai are cocircuits, so Hi = E − Ai are hyperplanes of
M[A]:

- If i ∈ I , then Hi is a hyperplane of M[AI ]

- If i 6∈ I , then Hi ∪ x is a hyperplane of M[AI ]

So looking which Hi are hyperplanes in M[AI ] we can recover I
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Proof of Thm 1 (II)

Thm 1 The following are equivalent:

(i) if I 6= J then M[AI ] 6= M[AJ ]

(ii) the presentation A is minimal

Idea of proof of (i) ⇒ (ii)

Assume A is not minimal. Say Ar is not a cocircuit

We claim that M[A[r−1]] = M[A[r ]]

It is essentially a consequence of the lemma of Bondy and Welsh
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The weak order

Let M1,M2 be two matroids on E . The weak order:

M1 ≤w M2 if every independent set in M1 is independent in M2
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Extensions and the weak order

Fact: the set of all extensions of a matroid M is a lattice under
the weak order
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Fact: the set of all extensions of a matroid M is a lattice under
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A question

Is the set of all transversal extensions of a transversal matroid also
a lattice under the weak order?

I Thus, given N1 and N2 two transversal extensions of M, is
there a smallest transversal extension N3 such that N1 ≤w N3

and N2 ≤w N3?



Example
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But the ordinary join M5 ∨M6 is not transversal
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One (predictable?) result

Thm
For a transversal matroid M[A], the set of extensions obtained by
adding a new element x to some of the sets in A is a lattice under
the weak order.

The transversal join of M[AI ] and M[AJ ] is M[AI∪J ]

Yet their transversal meet need not be M[AI∩J ] if A is not minimal



Wrapping up

I We know how to get all transversal extensions of a transversal
matroid
We know some ways in which repetitions can arise

We would like to get each extension only once!

I We understand a little the structure of the set of transversal
extensions

We would like to understand it better!

I We would like to use our results!
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