# How to uniquely determine your location in a graph? A metric dimension problem 

Rinovia Simanjuntak<br>Combinatorial Mathematics Research Group<br>Faculty of Mathematics and Natural Sciences<br>Institut Teknologi Bandung, Bandung 40132, Indonesia<br>e-mail: rino@math.itb.ac.id


#### Abstract

The metric dimension problem was first introduced in 1975 by Slater [4], and independently by Harary and Melter [3] in 1976; however the problem for hypercube was studied (and solved asymptotically) much earlier in 1963 by Erdős and Rényi [2]. A set of vertices $S$ resolves a graph $G$ if every vertex is uniquely determined by its vector of distances to the vertices in $S$. The metric dimension of $G$ is the minimum cardinality of a resolving set of $G$. An analog problem for directed graphs was then considered by Chartrand, Raines and Zhang [1] in 2000.

I this talk I will present a short historical account, known techniques, recent results, and open problems in the area of metric dimension for undirected and directed graphs.


## References

[1] G. Chartrand, M. Raines, P. Zhang, The Directed Distance Dimension of Oriented Graphs, Math. Bohemica 125 (2000) 155-168.
[2] P. Erdős and A. Rényi, On two problems of information theory, Magyar Tud. Akad. Mat. Kutat Int. Kzl 8 (1963), 229-243.
[3] F. Harary, and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.
[4] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549-559.

